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Juha E. Jääskeläinen14, Juha Hernesniemi3, Marjo-Riitta Järvelin15,16,17,18, Anneli Pouta18, The

International Consortium for Blood Pressure Genome-Wide Association Studies (ICBP-GWAS)",

Christopher Newton-Cheh19,20, Veikko Salomaa21, Aarno Palotie2,4,22,23, Markus Perola1,2,24

1 Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, 2 Institute for Molecular Medicine Finland

(FIMM), University of Helsinki, Helsinki, Finland, 3 Department of Neurosurgery, Helsinki University Central Hospital, Helsinki, Finland, 4 The Wellcome Trust Sanger Institute, Hinxton,

United Kingdom, 5 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland, 6 Department of Clinical Physiology, University of Turku

and Turku University Hospital, Turku, Finland, 7 Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Tampere, Finland, 8 Diabetes Unit,

Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland, 9 Department of General Practice and Primary Health Care, Institute of Clinical

Medicine, University of Helsinki, Helsinki, Finland, 10 Vasa Central Hospital, Vasa, Finland, 11 Folkhälsan Research Centre, Helsinki, Finland, 12 Unit of General Practice, Helsinki

University Central Hospital, Helsinki, Finland, 13 Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States of America,

14 Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland, 15 Department of Biostatistics and Epidemiology, School of Public Health, Faculty of Medicine,

Imperial College, London, United Kingdom, 16 Institute of Health Sciences, University of Oulu, Oulu, Finland, 17 Biocenter Oulu, University of Oulu, Oulu, Finland, 18 Department of

Children, Young People and Families, National Institute for Health and Welfare, Oulu, Finland, 19 Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts

General Hospital, Boston, Massachusetts, United States of America, 20 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts,

United States of America, 21 Chronic Disease Epidemiology and Prevention Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki,

Finland, 22 Program in Medical and Population Genetics and Genetic Analysis Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America,

23 Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland, 24 University of Tartu, Estonian Genome Centre, Tartu, Estonia

Abstract

Although genome-wide association studies (GWAS) have identified hundreds of complex trait loci, the pathomechanisms of
most remain elusive. Studying the genetics of risk factors predisposing to disease is an attractive approach to identify targets for
functional studies. Intracranial aneurysms (IA) are rupture-prone pouches at cerebral artery branching sites. IA is a complex
disease for which GWAS have identified five loci with strong association and a further 14 loci with suggestive association. To
decipher potential underlying disease mechanisms, we tested whether there are IA loci that convey their effect through
elevating blood pressure (BP), a strong risk factor of IA. We performed a meta-analysis of four population-based Finnish cohorts
(nFIN = 11 266) not selected for IA, to assess the association of previously identified IA candidate loci (n = 19) with BP. We defined
systolic BP (SBP), diastolic BP, mean arterial pressure, and pulse pressure as quantitative outcome variables. The most significant
result was further tested for association in the ICBP-GWAS cohort of 200 000 individuals. We found that the suggestive IA locus
at 5q23.2 in PRDM6 was significantly associated with SBP in individuals of European descent (pFIN = 3.01E-05, pICBP-GWAS = 0.0007,
pALL = 8.13E-07). The risk allele of IA was associated with higher SBP. PRDM6 encodes a protein predominantly expressed in
vascular smooth muscle cells. Our study connects a complex disease (IA) locus with a common risk factor for the disease (SBP).
We hypothesize that common variants in PRDM6 can contribute to altered vascular wall structure, hence increasing SBP and
predisposing to IA. True positive associations often fail to reach genome-wide significance in GWAS. Our findings show that
analysis of traditional risk factors as intermediate phenotypes is an effective tool for deciphering hidden heritability. Further, we
demonstrate that common disease loci identified in a population isolate may bear wider significance.
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Introduction

Intracranial aneurysms (IA) are berry-shaped pouches at the

branching sites of cerebral arteries. 2–5% of the world population

is estimated to harbor IA [1]. Most IA go unnoticed during one’s

lifetime. However, when they become symptomatic, it is usually

due to rupture, causing subarachnoid hemorrhage (SAH). SAH is

devastating intracranial bleeding, and half of those with SAH die

within a year [2,3]. SAH affects the working age population, with

a median age of 55 [4]. Its incidence in Finland is 19/100 000/

year [5,6], triple than that of the rest of the world. The reason for

this higher than average incidence is unknown. Aneurysmal SAH

places a heavy burden on society both emotionally and financially.

The strongest known non-modifiable risk factor of SAH is family

history of the disease, and the strongest modifiable risk factors are

smoking, excessive alcohol intake, and hypertension [7]. An

important step in tackling SAH is to understand why IAs develop.

Our understanding of the environmental and genetic back-

ground of IA formation is limited. Positive family history of IA or

SAH, older age and female sex increase the risk of developing IA

[1]. Of the general cardiovascular risk factors, smoking has been

shown to increase the risk of IA formation [8], and high blood

pressure has long been speculated to do so [9]. The high, often

undocumented, prevalence of high blood pressure in the control

populations is likely the reason why it frequently fails to reach

statistical significance as an IA risk factor [1]. Chronic hyperten-

sion may contribute to IA formation by imposing constantly high

shear stress on vascular walls [9].

Multiple factors, such as familial aggregation of the disease,

make a genetic contribution likely to the risk of IA. A minority of

IAs show familial aggregation (under 10%) [7]. Linkage studies in

IA families have highlighted numerous genetic regions and a

recent exome sequencing study identified coding mutations in

familial thoracic aortic aneurysm with intracranial aneurysm [10].

However, the majority of IA is sporadic. Sporadic IA is a complex

disease and no gene with a certain role has been identified yet.

Recent genome-wide association studies (GWAS) [11,12] involv-

ing Finnish IA patients, have attempted to decipher the complex

genetic background of IA. From these studies, five loci emerged

with strong association to IA (p,5E-07, posterior probability of

association –PPA.0.5), with the highest statistical significance at

9p21.3, a risk locus of multiple cardiovascular diseases. Further 14

loci exhibited suggestive association to IA (0.1#PPA,0.5).

Despite the success of GWAS in identifying IA susceptibility

loci, the pathomechanism by which they contribute to IA

formation remains elusive. We hypothesize that hypertension, a

strong modifiable risk factor of IA, may possess an overlapping

genetic background with IA. To test this hypothesis, we analyzed

the IA loci so far identified, in well-characterized population-based

cohorts consisting of more than 210 000 individuals with blood

pressure measurements.

Results

41 SNPs from 19 independent IA loci [13] were first analyzed

for association with blood pressure in the national Health 2000

survey (H2000) [14] discovery cohort of 1581 individuals without

blood pressure lowering medication (Table S1). We adjusted the

analysis for age and gender (ROBUST model). The most

significant association (p,0.1) were observed at 2q33.1 with

diastolic blood pressure (DBP) and with mean arterial pressure

(MAP), at 4q31.23 and 19q13.12 with DBP, and at 5q23.2 with

systolic blood pressure (SBP), DBP, and MAP. We did not detect

association with pulse pressure (PP) (Table S1). Next, we wanted to

analyze the independence of the association signals observed. We

tested all 19 loci SNPs adjusting for further factors known to affect

blood pressure, namely smoking habits, alcohol consumption, and

body mass index (BMI) (ADVANCED model). There was no

tendency of association with DBP at 4q31.23 and 19q13.12 with

the ADVANCED model. The strength of the association

decreased for the four SNPs at the 2q33.1 locus for SBP, but

increased marginally for DBP, and MAP. At 5q23.2 the strength

of association increased substantially for most blood pressure

measurements, such as SBP, DBP, and MAP (Table 1 and Table

S2) for all three SNPs tested. The IA risk alleles at 5q23.2 were

associated with elevated blood pressure.

To confirm the initial association signals at the 2q33.1 and

5q23.2 loci observed in the H2000 discovery cohort, we tested

them for association with blood pressure in three additional

population-based cohorts from Finland. SNPs at 2q33.1 failed to

show significant association with DBP and MAP in any of the

replication cohorts (the Cardiovascular Risk in Young Finns

Study-YFS [15,16], the Northern Finland Birth Cohort 1966-

NFBC1966 [17], and the Helsinki Birth Cohort Study-HBCS

[18]). When the results were combined from all cohorts in a fixed

effect meta-analysis, they remained non-significant (Table 2). At

5q23.2 SNPs showed significant association with SBP in YFS and

NFBC1966 (Table 1). In HBCS, although consistent in the

direction of the effect, the association remained suggestive. When

the results were combined from all cohorts in a fixed effect meta-

analysis, we detected significant association with SBP at 5q23.2

(prs570682 = 4.80E-05, prs2287696 = 6.81E-05, prs335206 = 3.01E-05)

(Table 1). Comparing the mean SBP of the study participants

stratified for their 5q.23.2 genotypes indicated a positive

correlation between the number of risk alleles and higher SBP

for all three SNPs tested (Figure 1). Study participants homozygous

for the risk allele (C, in the case of rs335206), had on average 1.3

Hgmm higher SBP compared to those who were homozygous for

the protective allele, and 0.9 Hgmm higher than those with the

heterozygous genotype. This effect size is comparable to those of

most blood pressure loci identified by The International

Consortium for Blood Pressure Genome-wide Association Studies

(ICBP-GWAS) consortium [19]. The observed linear effect of risk

allele count is strongly suggestive of a true association. Association

at 5q23.2 with DBP (prs570682 = 0.02, prs2287696 = 0.04,

prs335206 = 0.03) and MAP (prs570682 = 0.0007, prs2287696 = 0.0010,

prs335206 = 0.0004) showed a reduction of significance when results

were combined from all cohorts (Table S2).

To test whether the association at the 5q23.2 locus is unique to

the Finnish cohorts, we attempted to replicate the association with

the three SNPs in the multinational cohort ICBP-GWAS [19]. All

three SNPs showed significant association with SBP

(prs570682 = 0.0065, prs2287696 = 0.00079, prs335206 = 0.0014) in the

ICBP-GWAS cohort of 200 000 individuals of European descent.

The risk allele for elevated SBP in the ICBP-GWAS cohort was

the same as in our meta-analysis of four Finnish population-based
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cohorts. When the results from the four Finnish cohorts were

combined with the ICBP-GWAS results in a fixed effect meta-

analysis, the strength of the association increased with all three

SNPs tested (Table 3). The strongest association was observed with

rs2287696 (pALL = 8.13E-07). This suggests that the variant at

5q23.2 is a common risk factor present in multiple populations of

European descent. Further loci or results for DBP or MAP were

not tested for association in ICBP-GWAS, since they failed to

show significant association in our replication cohorts.

All three tested SNPs at 5q23.2 reside in intronic regions of the

gene PR domain containing 6 (short form: PRDM6) and showed

comparable p-values. To further explore the associated region in

an attempt to pinpoint the causative variant, we examined all 1000

Genomes variants around PRDM6 in the four Finnish cohorts

(Figure 2). The strongest association was observed with rs163189

(p = 6.12E-06) near rs570682 and rs2287696, in the second intron,

where the most significantly associated SNPs clustered. All five of

the strongest associated SNPs are located within a 4.7 kb region at

122.4 MB (Human genome build 36), surrounding a Sterol

regulatory element binding transcription factor 1 (SREBP1)

binding site (Figure 2) [20].

Discussion

Hypertension, a leading cardiovascular risk factor, is a strong

modifiable risk factor for IA and its deadly rupture. Our study

establishes a genetic link between elevated SBP and IA formation.

Further, we demonstrate the benefits of using population isolates

for mapping complex disease loci valid in multiple populations.

5q23.2 was identified as a suggestive IA risk locus by Yasuno

and colleagues [13] in a multinational GWAS including Finnish

IA patients. The strength of the association at 5q23.2 in their

study mainly came from the Finnish cohort (Figure S1). However,

albeit weaker, association to IA at 5q23.2 was observable in all

cohorts tested by Yasuno and colleagues. In the two tier approach

we applied, the suggestive aneurysmal locus at 5q23.2 showed

robust association to blood pressure traits in three cohorts

(namely the discovery cohort H2000, and the replication cohorts

NFBC1966 and YFS). The trend of the effect was the same while

the association remained suggestive with blood pressure traits in

the HBCS. HBCS participants’ average age was higher (61 years)

than that of the rest (36 years) (Figure S2). With age, the relative

contribution of genetic predisposition and lifestyle may change,

potentially accounting for the less significant association in

HBCS.

In our meta-analysis of candidate loci the most significant

association was observed at 5q23.2 in PRDM6. Although an

association can be observed throughout the whole gene, fine-

mapping of the region with 1000 Genomes variants revealed the

focus of association to be within a 4.7 kb region in the second

intron (Figure 2). PRDM6 encodes an epigenetic modulator of

transcription with roles in endothelial [21] and vascular smooth

muscle cells (SMC) [22]. PRDM6 has a critical role in arterial wall

Author Summary

When multiple genes or genetic regions contribute to the
inherited risk of a disease, it is referred to as a complex
disease. Genome-wide association studies (GWAS) aim to
detect common genetic variations that associate with
complex traits or diseases. Although GWAS have been
successful in identifying strongly associated genetic loci,
they lack the means to point out true, but less strong,
associations. Studying conditions that are related to the
disease of interest can help sort out less strong
associations. Intracranial aneurysms (IA) are berry-like
dilations in cerebral arteries. Most IAs do not give
symptoms until they bleed, causing a highly fatal form of
stroke. Half of the people who suffer bleeding of an IA die.
IA is a complex disease. Both inherited risk and environ-
mental factors contribute to the risk of developing IA.
Women, smokers, those with high alcohol intake or high
blood pressure are more prone to develop IA and
bleeding. GWAS found 19 genetic regions increasing the
risk of IA. Here we show that one of these loci, on the long
arm of chromosome 5, in addition to raising IA risk also
increases systolic blood pressure. We speculate that the
cause is modified vascular wall structure.

Table 1. 2q33.1 and 5q23.2 loci cohort-wise ADVANCED model effect estimates and meta-analysis results with systolic blood
pressure (SBP).$

Discovery -
beta (SE) Replication - beta (SE) Meta SBP*

Locus SNP IA Risk Allele MAF H2000 YFS NFBC1966 HBCS p beta (SE)

2q33.1 rs1429412 G 0.5 0.75 (0.64) 20.27 (0.42) 20.15 (0.24) 0.05 (0.85) 6.65E-01 20.08 (0.19)

2q33.1 rs12472355 A 0.5 0.73 (0.64) 20.24 (0.42) 20.11 (0.24) 20.03 (0.85) 7.71E-01 20.06 (0.19)

2q33.1 rs787997 A 0.4 0.62 (0.65) 20.11 (0.42) 20.08 (0.24) 0.25 (0.84) 9.66E-01 20.01 (0.19)

2q33.1 rs787994 T 0.4 0.68 (0.65) 0.03 (0.42) 20.03 (0.24) 0.26 (0.85) 7.53E-01 0.06 (0.19)

5q23.2 rs570682 T 0.2 1.48 (0.69) 1.22 (0.47) 0.71 (0.27) 0.46 (0.98) 4.80E-05 0.87 (0.22)

5q23.2 rs2287696 A 0.2 1.68 (0.71) 1.18 (0.49) 0.67 (0.28) 0.93 (1.03) 6.81E-05 0.89 (0.22)

5q23.2 rs335206 C 0.4 1.02 (0.60) 0.85 (0.40) 0.74 (0.24) 0.60 (0.84) 3.01E-05 0.79 (0.19)

Genomic positions are based on the human genome build 36. Alleles are reported on the forward strand of the reference genome. The effects are reported for the
alleles increasing risk for IA in the Yasuno et al. studies [12,13]. Risk alleles are aligned according to the forward strand of the reference genome. Minor allele frequencies
(MAF) are based on from the HapMap Phase II CEU population data.
$Diastolic blood pressure (DBP) and mean arterial pressure (MAP) association results from 2q33.1 and 5q23.2 SNP are in Table S2.
*Meta SBP: meta-analysis of discovery and replication cohort p-values and beta for systolic blood pressure (SBP) with the ADVANCED model. Association analyses were
corrected for gender, age, BMI, smoking habits and alcohol consumption.
SE: standard error.
doi:10.1371/journal.pgen.1002563.t001
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SMC, where it is predominantly expressed. PRDM6 participates

in the phenotypic switch between proliferative and differentiating

vascular SMC phenotypes [22]; when active, PRDM6 inhibits

differentiation and promotes proliferation. Excess vascular SMC

proliferation is an important pathomechanism in hypertension,

and it exacerbates the vascular wall remodeling often seen in IA

[23,24]. When vascular SMCs re-enter the cell cycle to proliferate,

they lose their contractile qualities. Distinct from extracranial

arteries, cerebral arteries lack an external elastic lamina and the

adventitia is weakly developed, making them inflexible, and less

resistant to stress [25]. It is possible that when SMC proliferation

further stiffens cerebral arteries, they become incapable of

adjusting to shear stress, and give way to IA formation. This is a

plausible explanation to why the intracranial manifestation of a

supposedly generalized vasculopathy can be so distinct. Intrigu-

ingly, excessive vascular SMC proliferation is part of the

pathomechanism of the strongest common IA risk locus at

9p21.3 [26]. However, to test possible causality, examination of

whether the risk variant at 5q23.2 is associated with higher

PRDM6 activity is necessary. Although the causative variant

Table 2. Summary of leading SNPs from the 19 loci showing strong or suggestive association with IA in a multinational GWAS
containing Finnish patients [12].

Representative SNPs of IA loci with PPA.0.5 (Yasuno et al 2010 [12])

IA GWAS (Yasuno et al. 2010)#
SBP meta-analysis with
ROBUST model$

SBP meta-analysis
with ADVANCED
model$

Locus SNP Position Gene Risk Allele Finnish p OR (95% CI) PPA## beta (SE) p beta (SE) p

8q12.1 rs9298506* 55600077 39-SOX17 A 1.00E-05 1.39(1.20–1.61) 0.9999 20.03 (0.23) 8.80E-01 20.09 (0.22) 6.79E-01

9p21.3 rs1333040 22073404 CDKN2A/B T 5.30E-08 1.39(1.23–1.56) 0.9999 0.07 (0.19) 7.20E-01 20.04 (0.19) 8.24E-01

10q24.32 rs12413409 104709086 CNNM2 G 4.20E-02 1.27(1.01–1.59) 0.9990 0.62 (0.35) 7.78E-02 0.67 (0.34) 4.99E-02

13q13.1 rs9315204 32591837 STARD13 T 1.70E-04 1.27(1.12–1.44) 0.9981 0.04 (0.21) 8.64E-01 0.12 (0.20) 5.51E-01

18q11.2 rs11661542 18477693 RBBP8 C 2.30E-02 1.14(1.02–1.28) 0.9999 0.00 (0.20) 9.81E-01 0.00 (0.19) 9.86E-01

Representative SNPs of IA loci with 0.1#PPA,0.5 (Yasuno et al 2011 [13])

IA GWAS (Yasuno et al. 2010)#
SBP meta-analysis
with ROBUST model$

SBP meta-analysis with
ADVANCED model$

Locus SNP Position Gene Risk Allele Finnish p OR (95% CI) PPA## beta (SE) p beta (SE) p

1p36.31 rs1876848 6876262 CAMTA1 G 1.30E-01 1.12 (0.97–1.30) 0.1128 0.03 (0.24) 8.98E-01 20.09 (0.23) 6.87E-01

1p22.2 rs1725390 91031160 BARHL2-ZNF644 A 1.40E-03 1.21 (1.08–1.36) 0.1011 20.08 (0.20) 6.72E-01 20.13 (0.19) 4.92E-01

1q21.3 rs905938 153258013 DCST2 T 6.70E-03 1.22 (1.06–1.41) 0.1252 0.38 (0.23) 9.96E-02 0.37 (0.22) 9.91E-02

2q33.1 rs787994 197931366 ANKRD44-SF3B1 T 2.90E-04 1.25 (1.11–1.41) 0.0988 0.25 (0.20) 2.11E-01 20.06 (0.19) 7.53E-01

4q31.23 rs6841581* 148620640 upstream EDNRA G 4.00E-03 1.31 (1.09–1.58) 0.1750 0.11 (0.28) 6.91E-01 0.16 (0.27) 5.54E-01

5q23.2 rs2287696 122488231 PRDM6 A 3.60E-04 1.28 (1.12–1.46) 0.1760 0.87 (0.23) 1.83E-04 0.89 (0.22) 6.81E-05

8p23.2 rs2045637 2963188 CSMD1 A 9.20E-05 1.37 (1.17–1.61) 0.2139 0.31 (0.28) 2.61E-01 0.35 (0.27) 1.95E-01

8q24.23 rs6577930** 139582362 FAM135B-
COL22A1

T 3.00E-03 1.21 (1.11–1.33) 0.1386 20.01 (0.02) 4.84E-01 20.01 (0.02) 4.58E-01

11q22.2 rs2124216 101644113 YAP1-BIRC3 A 4.50E-04 1.26 (1.11–1.43) 0.1963 0.12 (0.23) 6.00E-01 0.11 (0.23) 6.24E-01

12p13.31 rs728342 5577633 TMEM16B G 4.80E-02 1.14 (1.00–1.30) 0.1601 20.14 (0.22) 5.10E-01 20.18 (0.21) 4.08E-01

12q22 rs6538595 94030754 FGD6 A 1.70E-02 1.17 (1.03–1.34) 0.1136 20.37 (0.22) 9.15E-02 20.45 (0.21) 3.68E-02

19q13.12 rs1688005 40340205 FXYD5 G 3.80E-02 1.14 (1.01–1.29) 0.1244 0.17 (0.21) 4.27E-01 0.10 (0.20) 6.34E-01

20p12.1 rs1132274** 17544155 RRBP1 A 1.00E-02 1.23 (1.05–1.45) 0.1435 0.04 (0.02) 2.69E-02 0.03 (0.02) 1.37E-01

22q12.1 rs133885 24489289 MYO18B G 2.20E-01 1.08 (0.96–1.21) 0.1230 0.19 (0.19) 3.18E-01 0.30 (0.19) 1.16E-01

Association results with intracranial aneurysm (IA) by Yasuno and colleagues are followed by our meta-analysis association results with systolic blood pressure (SBP),
with the ROBUST and the ADVANCED models, respectively.
Table first shows association p-values with IA for the Finnish sub-group from the multinational GWAS (IA GWAS), followed by results from our meta-analysis of
association with systolic blood pressure (SBP) with the ROBUST and ADVANCED models. In the ROBUST model of association we corrected for gender and age and in
the ADVANCED model we further corrected for BMI, smoking habits and alcohol consumption.
Genomic positions are based on the human genome build 36. Alleles are reported on the forward strand of the reference genome. The effects are reported for the
alleles increasing risk for IA in the Yasuno et al. studies [12,13]. If SNP is intergenic, Gene represents the nearest gene. SNPs are directly genotyped unless otherwise
marked (* HM2 imputed SNP, ** 1000G+HM3 imputed SNP). Yasuno et al (2011) at 8q24.23 followed-up with rs1554349 instead of the lead SNP, rs6577930.
In bold: locus showing strongest association with SBP in meta-analysis.
#‘IA GWAS’ triplet column shows the Finnish sub-group (nFINN-IA-CASES = 912, nFINN-CONTROLS = 8180) association results on IA of the GWAS by Yasuno and colleagues,
except for the PPA results, which is not Finnish sub-group specific, but counted for the whole multinational cohort.
##PPA: posterior probability of association with IA as calculated by Yasuno and colleagues for the multinational IA GWAS.
$‘SBP meta-analysis with ROBUST model’ and ‘with ADVANCED model’ twin-columns show results of our candidate locus meta-analysis with SBP as the outcome
variable. SBP meta-analysis beta values are given for IA risk alleles.
OR: odds ratio, CI: confidence interval, SE: standard error.
doi:10.1371/journal.pgen.1002563.t002
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remains elusive, we succeeded in narrowing down the associated

region markedly. The 4.7 kb region showing the strongest

association harbors a SREBP1 binding site. SREBP1 is a

transcription factor governing cellular lipid biosynthesis. High-

lighting its biological significance in vascular traits, non-synony-

mous mutations in SREBP1 cause spontaneous hypertension in

rats [27]. It is possible that common variants facilitate SREBP1

binding, and thus, as shown by Zhou and colleagues [28], cause

vascular SMC proliferation. We propose that this effect is

conveyed by PRDM6 activation.

Although both the location and the function of the gene

highlight PRDM6 as a likely candidate, it is not the only plausible

gene near the association signal. Centrosomal protein of 120 KD (short

form: Cep120) is just downstream from the region of association

(Figure 2). Cep120 is a centrosomal protein with preferentially high

expression in neuronal progenitors during development [29].

Cep120 could contribute to IA risk by causing perturbation in the

neurovascular niche.

This is the first study establishing a shared genetic background

at 5q23.2 for IA and its important risk factor, high blood pressure.

However, both IA [30,31] and hypertension [32] have shown

linkage to 5q23.2 in previous studies. Resequencing the genomic

region in families that previously showed linkage to 5q23.2 might

reveal penetrant variants causing familial IA or severe high blood

pressure, or possibly both. Notably, Vasan and colleagues [33]

found that rs17470137, less than 8 kb downstream from PRDM6,

is associated with aortic root size, a feasible proxy of blood

pressure [34].

GWAS are designed to identify associations, they do not prove

causality. Deep resequencing of the associated region may improve

the fine mapping and guide closer to the causative variant, or even

uncover it, although resequencing efforts of GWAS regions have

had limited success [35]. A further limitation of our study is that

we were unable to address whether the identified risk variant at

5q23.2 increases the risk of developing IA as a consequence of

elevated SBP (causality between high SBP and IA) or whether the

variant modifies vessel wall structure in a way that elevates SBP

and increases IA risk as a pleiotropic effect (Figure S3). A study

conducted in a cohort characterized both for IA and blood

pressure would likely be a more suitable way of addressing this

question. Unfortunately, to the best of our knowledge, such a

large-scale cohort does not currently exist. The identified risk

variant, however, is unlikely to confer its effect solely by increasing

blood pressure, as leading hypertension risk loci fail to show

association with IA (data not shown). Yet, the mechanical effect of

elevated BP on the vessel wall, likely exacerbates IA formation.

The significance of the association identified in our study awaits

confirmation in other ethnicities.

To further decipher the genetics of IA, it is important to test if

genetic links can be established between IA and other strong risk

factors, such as smoking and alcohol consumption. In conclusion,

our results highlight the link between IA and blood pressure.

Materials and Methods

Study Subjects
Four Finnish population-based cohorts were included in our

study (Table 4). These cohorts were not characterized for IA. We

utilized genome-wide genotyped participants with available blood

pressure data, excluding those on blood pressure medication and

those for whom blood pressure medication data was not available

(nexcluded = 1373). In our two tier approach, the discovery cohort

(ndiscovery = 1581) was a subsample of the H2000 [14]. The H2000

study was carried out in several regions of Finland from fall 2000

to spring 2001, and was designed to provide information on the

health of the Finnish population. A subset of this cohort, consisting

of metabolic syndrome cases and matched controls, was genotyped

and utilized in this analysis. The replication cohort (nreplication =

8312) consisted of the YFS (n = 1874) [15,16], the NFBC1966

(n = 5361) [17], and the HBCS (n = 1077) [18]. YFS participants

were recruited from all around Finland for a large follow-up study

on cardiovascular risk factors in young individuals in 1980. Clinical

data are from the follow-up at age 27 performed in 2007. NFBC1966

comprises individuals born in 1966 in the two northernmost provinces

of Finland (Oulu and Lapland). Clinical examinations took place at the

follow-up at age 31 in 1997. The HBCS participants were recruited

from the Helsinki region. The study examines the impact of fetal

environmental factors on childhood and adult life. Clinical examina-

tions took place during 2001–2004. HBCS participants had the highest

average age (Figure S2).

The ICBP-GWAS represents a union of numerous prior blood

pressure GWAS consortia to create a discovery meta-analysis of

Figure 1. Cohort-wise effects of risk allele count on SBP. The higher median age in HBCS is reflected as higher systolic blood pressure (SBP)
and less consistent association. Error bars show standard error.
doi:10.1371/journal.pgen.1002563.g001
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over 200 000 individuals of European ancestry. NFBC1966 is part

of the ICBP-GWAS; however, this overlap does not represent a

significant risk for bias, due to the small relative contribution of

NFBC1966 to the ICBP-GWAS results.

Genotyping and Imputation
All Finnish cohorts were genotyped using Illumina arrays

(Illumina Inc. San Diego, CA, USA): Illumina Infinium HD

Human610-Quad BeadChip for H2000, Illumina Hu-

manCNV370-Duo BeadChip for NFBC1966, and Illumina

Human670K custom BeadChip for YFS and HBCS. For SNPs

to be successfully genotyped, a per individual and per marker

success rate minimum of 95% was defined as default. 36 out of 41

candidate SNPs were successfully genotyped in all cohorts. For

SNPs with no directly genotyped data available, we imputed

genotypes with MACH [36] using HapMap CEU from Phase II as

the reference panel (further referred to as HM2 imputed data). If a

SNP was not present in HM2 imputed data, we used genotypes

imputed with IMPUTEv2 using the 1000 Genomes pilot data

CEU panel (August 2009 haplotypes) combined with HapMap

Phase 3 (Public Release #2) haplotypes as the reference panel

[37], extended with Finnish specific HapMap Phase 3 haplotypes

[38] (further referred to as 1000G+HM3 imputed data). All

missing genotypes were imputed, so the number of individuals

included in the analyses for each SNP is the same and equals the

final number (Table 4).

IA Loci Association Analysis with Blood Pressure and
Meta-Analysis of Results

Candidate loci were selected based on IA GWAS results [13].

Loci associated with IA with PPA$0.1 were included (Table 2).

PPA was calculated as described by Yasuno et al [12]. Briefly, a

uniform prior probability of association of 1/10 000 was assumed

for all SNPs and used to provide a probabilistic measure of

evidence. We tested 41 SNPs from 19 independent loci. We

defined SBP, DBP, MAP, and PP as quantitative outcome

variables. MAP was counted as the average of SBP and DBP

Table 3. Meta-analysis results of 5q23.2 SNPs with systolic
blood pressure from all four Finnish cohorts and ICBP-GWAS
combined.

SNP Position Risk Allele beta (SE) p

rs570682 122477549 T 0.50 (0.11) 9.58E-06

rs2287696 122488231 A 0.57 (0.16) 8.13E-07

rs335206 122532465 C 0.41 (0.86) 2.00E-06

Genomic positions are based on the human genome build 36. Risk alleles are
aligned according to the forward strand of the reference genome. SE: standard
error.
doi:10.1371/journal.pgen.1002563.t003

Figure 2. Association with SBP around PRDM6: Meta-analysis results from the four Finnish cohorts. Square shapes represent genotyped
SNPs, circles imputed ones. Red arrow depicts the SREBP1 binding site. For each SNP, the symbol color indicates the SNP’s pairwise linkage
disequilibrium with the most significant SNP, rs163189, measured as r2. SNPs for which no recombination data is available from the 1000 Genomes
June 2010 CEU panel are in grey.
doi:10.1371/journal.pgen.1002563.g002
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((SBP+DBP)/2) and PP as the difference of the two (SBP-DBP).

We tested all 19 loci in the discovery cohort (H2000), and those

showing suggestive association (uncorrected p,0.1) with any

outcome variable were tested in the replication cohorts (YFS,

NFBC1966, and HBCS). Association analyses with an additive

genetic model were performed with ProbABEL [39] for HM2

imputed data, and with SNPTESTv2 [40,41] for 1000G+HM3

imputed data. The analyses were adjusted for age and gender

(ROBUST model), or for age, gender, smoking habits, alcohol

consumption, and BMI (ADVANCED model). Additionally, in

the metabolic syndrome case-control subset of the H2000 cohort

we corrected for case-control status in both models. Population

stratification was corrected for by calculating principal compo-

nents from genome-wide SNP data and including significant

principal components in the association models as covariates.

Association results were combined in a fixed effect meta-analysis

with MetABEL [39] for HM2 imputed data, and with

METAv1.2 [42] for 1000G+HM3 imputed data. The best result

at 5q23.2 in PRDM6 was tested for association in the ICBP-

GWAS [19] cohort of 200 000 individuals of European descent.

In the ICBP-GWAS association with SBP was tested by linear

regression assuming an additive model and correcting for age,

age-squared and BMI. To test the per-allele effect size of risk

alleles on blood pressure, we calculated the mean blood pressure

for the three genotypic states for the three 5q23.2 SNPs using

Plink v1.07 [43]. Results were plotted using the Microsoft Excel

charts function.

To further investigate the strongest associated locus, we

analyzed all 1000 Genomes variants, with minor allele frequency

greater than 1%, in and around PRDM6. We took uncertainty of

imputation into account by using the maximum likelihood

estimates of the reference allele counts as genotypes (these

estimates may be fractional and range from 0 to 2). Fine mapping

of the 5q23.2 region was performed with 1000G+HM3 imputed

data. Results were plotted with LocusZoom [44].

Supporting Information

Figure S1 Suggestive association with IA at 5q23.2 in GWAS

(Yasuno et al 2010) [12]. The association to IA is strongest in the

Finnish population, however, tendency is observable in other

populations as well. FI = Finnish, NL = Dutch, DE = German,

AN = mixed European cohort collected from Germany, Great

Britain, Hungary, The Netherlands, Switzerland and Spain.

JP2 = Japanese cohort.

(PDF)

Figure S2 Age distributions in the Finnish cohorts. In the

NFBC1966 all were of the same age, since data utilized here were

collected when the participants of the birth cohort were 31 years

old. HBCS participants were older than the rest. (X-axis

density = number of cohort participants).

(PDF)

Figure S3 Comparing causality and pleiotropy as possible

explanations of the overlapping association between IA and SBP.

(PDF)

Table S1 Association results in the discovery cohort (H2000)

of representative SNPs from the 19 regions tested. Association

with systolic blood pressure (SBP), diastolic blood pressure

(DBP), mean arterial pressure (MAP) and pulse pressure (PP)

were tested with the ROBUST model (age and gender as

covariates).

(DOC)

Table S2 2q33.1 and 5q23.2 loci cohort-wise ADVANCED

model effect estimates and meta-analysis results with diastolic

blood pressure (DBP) and mean arterial pressure (MAP).

(DOC)

Text S1 Full list of The International Consortium for Blood

Pressure Genome-Wide Association Studies (ICBP-GWAS) co-

authors, with affiliations.

(DOC)
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Table 4. Summary of cohort characteristics.

Discovery Replication Meta

Characteristic H2000 YFS NFBC1966 HBCS TOTAL

WG genotyped, QC passed 2210 2019 5361 1676 11266

WG genotyped, QC passed NOT taking BP medications 1581 1874 5361 1077 9893

Included in ROBUST model analysis 1575 1855 5242 1043 9715

Included in ADVANCED model analysis 1575 1805 5031 1038 9449

SBP (Hgmm, mean (SD)) 132 (19) 120 (14) 125 (13) 142 (20) 127 (17)

DBP (Hgmm, mean (SD)) 83 (11) 75 (11) 77 (12) 88 (10) 79 (12)

MAP (Hgmm, mean (SD)) 107 (13) 98 (12) 101 (11) 115 (14) 103 (13)

PP (Hgmm, mean (SD)) 49 (14) 45 (9) 48 (11) 54 (15) 48 (12)

Age (years, mean (SD)) 49 (10) 38 (5) 31 (0) 61 (3) 38 (11)

Gender (male (%)) 809 (51) 840 (45) 2531 (48) 444 (41) 4624 (47)

BMI (mean (SD)) 27 (4) 25 (5) 25 (4) 27 (4) 25 (4)

WG: whole-genome, QC: quality control, BP: blood pressure, SBP: systolic blood pressure, DBP: diastolic blood pressure, MAP: mean arterial pressure, PP: pulse pressure,
BMI: body-mass index, SD: 1 standard deviation.
doi:10.1371/journal.pgen.1002563.t004
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