14 research outputs found

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Administrative Law as the New Federalism

    Full text link

    What's in a name: The impact of monkeypox nomenclature

    No full text
    Abstract The monkeypox outbreak has garnered significant global attention and has since been declared a Public Health Emergency of International Concern (PHEIC). Even though the virus is not novel and has been endemic in African countries, most cases in the present outbreak have been detected in Europe and the Americas. Disease nomenclature has historically included references to places, animals, and people. There could be unintended negative consequences emanating from these references. The COVID‐19 pandemic has exposed some of these consequences, with terms such as “China virus” and fueling racism and hate crimes toward Asians, especially in America. Similarly, following the monkeypox outbreak, there have been reports of attacks on monkeys in Brazil even though monkeys are not linked to this present outbreak. The WHO Best Practices for the Naming of New Human Infectious Diseases has advised the avoidance of these references and terms that can cause negative impacts. The naming of the COVID‐19 virus is an example of the use of the new naming practice. The WHO is already working on new names for the monkeypox disease. This name change will help clear up the confusion and prevent further attacks on monkeys both in Brazil and other parts of the world

    GOLD 2023 Update: Implications for Clinical Practice

    Get PDF
    In 2022, over 3 million people died of chronic obstructive pulmonary disease (COPD) and the global burden of the disease is expected to increase over the coming decades. Recommendations for the treatment and management of patients with COPD are published by the Global Initiative for Chronic Obstructive Lung Disease, and updated annually with scientific evidence-based recommendations. The 2023 updates, published in November 2022, contain key changes to recommendations for diagnosis and treatment of COPD that are anticipated to have a significant impact on clinical practice for patients with COPD. Updates to how COPD is defined and diagnosed, including the expansion of contributing factors beyond tobacco use, have the potential to lead to the diagnosis of more patients and to allow for the implementation of early interventions for patients during early stages of the disease. Simplification of the treatment algorithms, and placement of triple therapy within these algorithms, will support clinicians in providing appropriate, timely treatment for patients with COPD with a focus on reducing the risk of future exacerbations. Finally, recognition of mortality reduction as a treatment goal in COPD supports an increase in the use of triple therapy, the only pharmacological intervention that has been demonstrated to improve survival for patients with COPD. Although further guidance and clarification are needed in some areas, such as use of blood eosinophil counts in guiding treatment decisions and implementation of treatment protocols following hospitalizations, recent updates to the GOLD recommendations will support clinicians in addressing current gaps in patient care. Clinicians should utilize these recommendations to drive the early diagnosis of patients with COPD, the identification of exacerbations, and the selection of appropriate, timely treatments for patients

    GOLD 2023 Update: Implications for Clinical Practice

    Get PDF
    In 2022, over 3 million people died of chronic obstructive pulmonary disease (COPD) and the global burden of the disease is expected to increase over the coming decades. Recommendations for the treatment and management of patients with COPD are published by the Global Initiative for Chronic Obstructive Lung Disease, and updated annually with scientific evidence-based recommendations. The 2023 updates, published in November 2022, contain key changes to recommendations for diagnosis and treatment of COPD that are anticipated to have a significant impact on clinical practice for patients with COPD. Updates to how COPD is defined and diagnosed, including the expansion of contributing factors beyond tobacco use, have the potential to lead to the diagnosis of more patients and to allow for the implementation of early interventions for patients during early stages of the disease. Simplification of the treatment algorithms, and placement of triple therapy within these algorithms, will support clinicians in providing appropriate, timely treatment for patients with COPD with a focus on reducing the risk of future exacerbations. Finally, recognition of mortality reduction as a treatment goal in COPD supports an increase in the use of triple therapy, the only pharmacological intervention that has been demonstrated to improve survival for patients with COPD. Although further guidance and clarification are needed in some areas, such as use of blood eosinophil counts in guiding treatment decisions and implementation of treatment protocols following hospitalizations, recent updates to the GOLD recommendations will support clinicians in addressing current gaps in patient care. Clinicians should utilize these recommendations to drive the early diagnosis of patients with COPD, the identification of exacerbations, and the selection of appropriate, timely treatments for patients

    A simple lung sound enhancement for automatic identification of lung pathologies

    No full text
    Auscultation or lung sound analysis depends on the familiarity of the physician on detecting sound patterns. However, typical environment for auscultation are performed in rooms susceptible to different sounds such as vocal sound, ventilation machines and ambient noise, which may impede the subjective evaluation of the lung sounds. This paper presents a simple signal enhancement scheme for normal lung sounds in order to successfully extract the features which include the bandwidth, peak frequency and center frequency. The extracted features could be used in automatic detection and classifications of lung sound abnormalities of different. Results show that the enhanced signal has features in the 300 to 700 Hz range while the raw and denoised signals have features below 300 Hz. Listening test shows improved score in enhanced signals over scores on the raw and denoised signals with an average score of 1.3 over 1.03 in raw and 0.82 in denoised signals

    SMO-based system for identifying common lung conditions using histogram

    No full text
    A radiograph is a visualization aid that physicians use in identifying lung abnormalities. Although digitized x-ray images are available, diagnosis by a medical expert through pattern recognition is done manually. Thus, this paper presents a system that utilizes machine learning for pattern recognition and classification of three lung conditions, namely Normal, Pleural Effusion and Pneumothorax cases. Using two histogram equalization techniques, the designed system achieves an accuracy rate of 76.19% and 78.10% by using Sequential Minimal Optimization (SMO). © 2013 IEEE

    III. Abteilung.

    No full text

    Meridional Overturning Circulation Observations in the Subtropical North Atlantic

    Get PDF
    Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Niña at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Niña. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1°C from 2010 to 2011, associated with cooling influences of La Niña. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Niño to La Niña, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr-1, almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was wellbelow average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced abovenormal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and aboveaverage surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmerthan- normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3°C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3°C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter. © 2012 American Meteorological Society

    Sea level variability and change

    Get PDF
    Large-scale climate patterns influenced temperature and weather patterns around the globe in 2011. In particular, a moderate-to-strong La Niña at the beginning of the year dissipated during boreal spring but reemerged during fall. The phenomenon contributed to historical droughts in East Africa, the southern United States, and northern Mexico, as well the wettest two-year period (2010-11) on record for Australia, particularly remarkable as this follows a decade-long dry period. Precipitation patterns in South America were also influenced by La Niña. Heavy rain in Rio de Janeiro in January triggered the country's worst floods and landslides in Brazil's history. The 2011 combined average temperature across global land and ocean surfaces was the coolest since 2008, but was also among the 15 warmest years on record and above the 1981-2010 average. The global sea surface temperature cooled by 0.1°C from 2010 to 2011, associated with cooling influences of La Niña. Global integrals of upper ocean heat content for 2011 were higher than for all prior years, demonstrating the Earth's dominant role of the oceans in the Earth's energy budget. In the upper atmosphere, tropical stratospheric temperatures were anomalously warm, while polar temperatures were anomalously cold. This led to large springtime stratospheric ozone reductions in polar latitudes in both hemispheres. Ozone concentrations in the Arctic stratosphere during March were the lowest for that period since satellite records began in 1979. An extensive, deep, and persistent ozone hole over the Antarctic in September indicates that the recovery to pre-1980 conditions is proceeding very slowly. Atmospheric carbon dioxide concentrations increased by 2.10 ppm in 2011, and exceeded 390 ppm for the first time since instrumental records began. Other greenhouse gases also continued to rise in concentration and the combined effect now represents a 30% increase in radiative forcing over a 1990 baseline. Most ozone depleting substances continued to fall. The global net ocean carbon dioxide uptake for the 2010 transition period from El Niño to La Niña, the most recent period for which analyzed data are available, was estimated to be 1.30 Pg C yr-1, almost 12% below the 29-year long-term average. Relative to the long-term trend, global sea level dropped noticeably in mid-2010 and reached a local minimum in 2011. The drop has been linked to the La Nina conditions that prevailed throughout much of 2010-11. Global sea level increased sharply during the second half of 2011. Global tropical cyclone activity during 2011 was wellbelow average, with a total of 74 storms compared with the 1981-2010 average of 89. Similar to 2010, the North Atlantic was the only basin that experienced abovenormal activity. For the first year since the widespread introduction of the Dvorak intensity-estimation method in the 1980s, only three tropical cyclones reached Category 5 intensity level-all in the Northwest Pacific basin. The Arctic continued to warm at about twice the rate compared with lower latitudes. Below-normal summer snowfall, a decreasing trend in surface albedo, and aboveaverage surface and upper air temperatures resulted in a continued pattern of extreme surface melting, and net snow and ice loss on the Greenland ice sheet. Warmerthan- normal temperatures over the Eurasian Arctic in spring resulted in a new record-low June snow cover extent and spring snow cover duration in this region. In the Canadian Arctic, the mass loss from glaciers and ice caps was the greatest since GRACE measurements began in 2002, continuing a negative trend that began in 1987. New record high temperatures occurred at 20 m below the land surface at all permafrost observatories on the North Slope of Alaska, where measurements began in the late 1970s. Arctic sea ice extent in September 2011 was the second-lowest on record, while the extent of old ice (four and five years) reached a new record minimum that was just 19% of normal. On the opposite pole, austral winter and spring temperatures were more than 3°C above normal over much of the Antarctic continent. However, winter temperatures were below normal in the northern Antarctic Peninsula, which continued the downward trend there during the last 15 years. In summer, an all-time record high temperature of -12.3°C was set at the South Pole station on 25 December, exceeding the previous record by more than a full degree. Antarctic sea ice extent anomalies increased steadily through much of the year, from briefly setting a record low in April, to well above average in December. The latter trend reflects the dispersive effects of low pressure on sea ice and the generally cool conditions around the Antarctic perimeter. © 2012 American Meteorological Society
    corecore