72 research outputs found

    Simulación de procesos químicos mediante algoritmos evolutivos: aplicación al ajuste de parámetros de impedancia en sistemas electroquímicos

    Get PDF
    La Espectroscopía de Impedancia Electroquímica (EIS, desus siglas en inglés) es una potente herramienta para elanálisis de sistemas metal-recubrimiento orgánico ya queproporciona información acerca del comportamiento delsistema estudiado tanto a nivel cualitativo como cuantitativo.A través del ajuste de los datos de impedancia obtenidosexperimentalmente a un circuito eléctrico equivalenteadecuado, se puede obtener información directamente relacionadacon la resistencia y durabilidad del recubrimientoanalizado. Para el análisis paramétrico de estos datosse han venido empleando tradicionalmente algoritmos deregresión no lineal que presentan el inconveniente de quepara una correcta estimación se han de proporcionar parámetrosde partida que favorezcan una rápida y buenaconvergencia en este proceso de ajuste. Como métodoalternativo a estos algoritmos, en este artículo se planteael uso de algoritmos evolutivos (más concretamente algoritmosde evolución diferencial), como estrategia para labúsqueda de los parámetros del circuito que permitan realizareste ajuste. Para testear y validar el procedimiento quese propone, se emplea software comercial de uso habitual(ZSimpWin). Los resultados obtenidos muestran un mejorgrado de ajuste en la totalidad de los casos estudiados

    Resolution of the apparent experimental discrepancies observed between SVET and SECM for the characterization of galvanic corrosion reactions

    Get PDF
    A new approach for studying the local distribution of anodic and cathodic sites in a corroding system using the scanning vibrating electrode technique (SVET) and scanning electrochemical microscopy (SECM) is presented. When zinc is coupled to iron, dissolution of the active metal occurs in a localized manner (e.g. pitting corrosion), allowing for cathodic sites to be developed on zinc. Local alkalization and oxygen consumption related to cathodic activity are detected above portions of the zinc surface using SECM. Anionic fluxes related to the generation of OH- ions could be measured on the zinc surface outside the corroding pit by rastering the SVET probe closer to the substrat

    Inhibitive effect of sodium (E)-4-(4-nitrobenzylidenamino) benzoate on the corrosion of some metals in sodium chloride solution

    Get PDF
    The inhibition performance of a novel anionic carboxylic Schiff base, sodium (E)-4-(4-nitrobenzylideneamino)benzoate (SNBB), was investigated for various metals, namely low carbon steel F111, pure iron and copper, in neutral 10 mM NaCl solution. Potentiodynamic polarization, scanning vibrating electrode technique (SVET), quantum chemical (QC) calculation, and molecular dynamics (MD) simulation were employed. The potentiodynamic polarization data showed that SNBB acts as an effective corrosion inhibitor for both iron and F111 steel, but it is not effective for the copper. In situ spatially-resolved SVET maps evidenced a major change in surface reactivity for Fe and F111 steel immersed in 10 mM aqueous solution in the absence and in the presence of SNBB. Featureless ionic current density distributions were recorded in the presence of SNBB at both their spontaneous open circuit potential (OCP) and under mild anodic polarization conditions, while major ionic flows were monitored above the metals in the absence of SNBB. On the basis of computer simulations, it is proposed that SNBB produces a stable chelate film on iron and steel surfaces that accounts for the good corrosion inhibition efficiency observed. The different inhibition efficiencies of SNBB molecules on the iron and copper was attributed to the special chemical structure of SNBB molecule and its different chelation ability with the released metal ions on the metal surface. The QC calculations also confirmed the high corrosion inhibition efficiency of SNBB. The MD simulation indicated higher binding energy of SNBB on iron surface compared to that of copper surface. The interaction mode of SNBB on iron and F111 steel surfaces corresponds to a mixed chemical and physical adsorption, and it obeys the Langmuir isother

    Corrosion resistance of ZrTi alloys with hydroxyapatite-zirconia silver layer in simulated physiological solution containing proteins for biomaterial applications

    Get PDF
    The degradation characteristics of hydroxyapatite-zirconia-silver films (HA-ZrO2-Ag) coatings on three ZrTi alloys were investigated in Ringer’s solution containing 10% human albumin protein at 37 °C. Samples were immersed for 7 days while monitored by electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP). The electrochemical analysis in combination with surface analytical characterization by scanning electron microscopy (SEM/EDX) reveals the stability and corrosion resistance of the HA–ZrO2-Ag coated ZrTi alloys. The characteristic feature that describes the electrochemical behaviour of the coated alloys is the coexistence of large areas of the coating presenting pores in which the ZrTi alloy substrate is exposed to the simulated physiological environment. The EIS interpretation of results was thus performed using a two-layer model of the surface film. The blocking effect in the presence the human albumin protein produces an enhancement of the corrosion resistance. The results disclose that the Zr45Ti alloy is a promising material for biomedical devices, since electrochemical stability is directly associated to biocompatibilit

    Multiscale electrochemical analysis of the corrosion of titanium and nitinol for implant applications

    Get PDF
    Surface electrochemical activity of titanium and nitinol biomaterials in naturally aerated Ringer’s physiological solution was investigated using potentiodynamic polarization and scanning electrochemical microscopy (SECM) techniques. SECM was operated in feedback and redox competition modes as a function of potential applied to the substrate. The kinetics of the electron transfer rate on both materials was characterized by mathematical modelling of the Z-approach curves monitored under feedback conditions. The rate constant values greatly depended on the characteristics of the passive layers formed over the metals under potentiostatic control. A more insulating film was found on nitinol when biased at low polarizations, resulting in smaller tip current increments during tip approach to the investigated surface under positive feedback and competition operation modes. However, at higher anodic polarizations, nitinol passive layers experience breakdown, and therefore tip current values reflect the release of metal cations from the biomaterial surfac

    Effect of acidic fluoride solution on the corrosion resistance of ZrTi alloys for dental implant application

    Get PDF
    The electrochemical behavior of Zr5Ti, Zr25Ti, and Zr45Ti, with and without surface modification were monitored in acidic artificial saliva (pH = 3) containing NaF concentrations 0.2, 0.5, and 1 wt.%, simulating the fluoride concentrations in dental rinses. A passive behaviour for thermally oxidized ZrTi alloys was found using EIS, and XPS data show that the protective oxide film contains both TiO2 and ZrO2, though titanium contents in the outer layer bigger than those in the base alloy result from thermal oxidation. High corrosion resistance to acidic fluoridated environments of ZrTi alloys treated using thermal oxidation in air at 500 ºC

    Corrosion behaviour of new quaternary ZrNbTiAl alloys in simulated physiological solution using electrochemical techniques and surface analysis methods

    Get PDF
    The potential biomedical application of three new quaternary Zr alloys, namely Zr6Ti15Nb4Al, Zr32Ti15Nb4Al, and Zr49Ti15Nb4Al, was evaluated in vitro using electrochemical methods complemented with surface analysis of corrosion resistance. Cyclic potentiodynamic polarization (CCP) and electrochemical impedance spectroscopy (EIS) tests were performed in Ringer’s solution at 37 ºC. The electrochemical behavior of the ZrTiNbAl quaternary alloys was consistent with the formation of passivating oxide films on the surfaces of these materials. Localized breakdown of the oxide layer occurred on Zr6Ti15Nb4Al and Zr32Ti15Nb4Al alloys subjected to positive anodic polarization, a feature confirmed by scanning electron microscopy (SEM) on retrieved samples. The Zr49Ti15Nb4Al alloy, which had the highest titanium (49 wt.%) content, exhibited a larger passive range in the polarization curve and was immune to localized corrosion breakdown in a simulated physiological solution for the range of polarizations that can occur in the human bod
    corecore