184 research outputs found

    Control of patterning, growth, and differentiation by floral organ identity genes

    Get PDF
    In spite of the different morphologies of sepal, petals, stamen and carpels, all these floral organs are believed to be modified versions of a ground-state organ similar to the leaf. Modifications of the ground-state developmental program are orchestrated by different combinations of MADS-domain transcription factors encoded by floral organ identity genes. In recent years, much has been revealed about the gene regulatory networks controlled by the floral organ identity genes and about the genetic pathways that control leaf development. Here, I review how floral organ identity is connected with the control of morphogenesis and differentiation of shoot organs, focusing on the model species Arabidopsis thaliana. Direct links have emerged between floral organ identity genes and genes involved in abaxial-adaxial patterning, organ boundary formation, tissue growth and cell differentiation. In parallel, predictive models have been developed to explain how the activity of regulatory genes can be coordinated by intercellular signaling and constrained by tissue mechanics. Combined, these advances provide a unique opportunity to reveal how exactly leaf-like organs have been "metamorphosed" into floral organs during evolution and to reveal crucial regulatory points in the generation of plant form

    The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud: spectroscopy, orbital analysis, formation, and evolution

    Full text link
    Massive Wolf-Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core-collapse. It is not known whether core He-burning WR stars (classical WR, cWR) form predominantly through wind-stripping (w-WR) or binary stripping (b-WR). With spectroscopy of WR binaries so-far largely avoided due to its complexity, our study focuses on the 44 WR binaries / binary candidates of the Large Magellanic Cloud (LMC, metallicity Z~0.5 Zsun), identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at sub-solar metallicity, and constraining the impact of binary interaction in forming them. Spectroscopy is performed using the Potsdam Wolf-Rayet (PoWR) code and cross-correlation techniques. Disentanglement is performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status is interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically-homogeneous evolution. No obvious dichotomy in the locations of apparently-single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently-single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.Comment: accepted to A&A on 10.05.2019; 69 pages (25 main paper + 44 appendix); Corrigendum: Shenar et al. 2020, A&A, 641, 2: An unfortunate typo in the implementation of the "transformed radius" caused errors of up to ~0.5dex in the derived mass-loss rates. This has now been correcte

    Bacterial Shoot Apical Meristem Inoculation Assay

    Get PDF
    © Springer Science+Business Media, LLC, part of Springer Nature 2020. By virtue of their sessile nature, plants may not show the fight-and-flight response, but they are not devoid of protecting themselves from disease-causing agents, attack by herbivores, and damages that are caused by other environmental factors. Plants differentially protect their life-sustaining organs such as plant apexes from the attack by microbial pathogens. There are well-established methods to inoculate/infect various plant parts such as leaves, roots, and stems with various different pathogens. The plant shoot apical meristems (SAM) are a high-value plant target that provides niche to stem cell populations. These stem cells are instrumental in maintaining future plant progenies by giving birth to cells that culminate in flowers, leaves, and stems. There are hardly few protocols available that allow us to study immune dynamics of the plant stem cells as they are hindered by various layers of the SAM cell populations. Here, we describe a step-by-step method on how to inoculate the Arabidopsis SAM with model plant pathogen Pseudomonas syringae pv. tomato DC3000

    The Tarantula Massive Binary Monitoring

    Get PDF
    We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300Msun, making it a candidate for the most massive star known. While the primary is a known late type, H-rich Wolf-Rayet star (WN6h), the secondary could not be so far unambiguously detected. Using moderate resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary, and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1 sin^3 i ~ M2 sin^3 i ~ 13 +- 2 Msun, with q = M2 / M1 = 1.01 +- 0.07. An analysis of emission excess stemming from a wind-wind collision yields a similar inclination to that obtained from polarimetry (i = 39 +- 6deg). Our analysis thus implies M1 = 53^{+40}_{-20} and M2 = 54^{+40}_{-20} Msun, excluding M1 > 300Msun. A detailed comparison with evolution tracks calculated for single and binary stars, as well as the high eccentricity, suggest that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ~ 80 Msun and initial masses of Mi,1 ~ 105 and Mi,2 ~ 90Msun, consistent with the upper limits of our derived orbital masses, and would imply an age of ~2.2 Myr.Comment: Accepted for Publication in A&A, 16 pages, 17 figures and 4 table

    An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway.

    Get PDF
    To optimize fitness a plant should monitor its metabolism to appropriately control growth and defense. Primary metabolism can be measured by the universally conserved TOR (Target of Rapamycin) pathway to balance growth and development with the available energy and nutrients. Recent work suggests that plants may measure defense metabolites to potentially provide a strategy ensuring fast reallocation of resources to coordinate plant growth and defense. There is little understanding of mechanisms enabling defense metabolite signaling. To identify mechanisms of defense metabolite signaling, we used glucosinolates, an important class of plant defense metabolites. We report novel signaling properties specific to one distinct glucosinolate, 3-hydroxypropylglucosinolate across plants and fungi. This defense metabolite, or derived compounds, reversibly inhibits root growth and development. 3-hydroxypropylglucosinolate signaling functions via genes in the ancient TOR pathway. If this event is not unique, this raises the possibility that other evolutionarily new plant metabolites may link to ancient signaling pathways

    Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set

    Get PDF
    Leucine-rich repeat receptor-like protein kinases (LRR RLKs) represent the largest group of Arabidopsis RLKs with approximately 235 members. A minority of these LRR RLKs have been assigned to diverse roles in development, pathogen resistance and hormone perception. Using a reverse genetics approach, a collection of homozygous T-DNA insertion lines for 69 root expressed LRR RLK genes was screened for root developmental defects and altered response after exposure to environmental, hormonal/chemical and abiotic stress. The obtained data demonstrate that LRR RLKs play a role in a wide variety of signal transduction pathways related to hormone and abiotic stress responses. The described collection of T-DNA insertion mutants provides a valuable tool for future research into the function of LRR RLK genes

    Continuous-time modeling of cell fate determination in Arabidopsis flowers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored.</p> <p>Results</p> <p>We propose an ordinary differential equation (ODE) model that describes the gene expression dynamics of a gene regulatory network that controls floral organ formation in the model plant <it>Arabidopsis thaliana</it>. In this model, the dimerization of MADS-box transcription factors is incorporated explicitly. The unknown parameters are estimated from (known) experimental expression data. The model is validated by simulation studies of known mutant plants.</p> <p>Conclusions</p> <p>The proposed model gives realistic predictions with respect to independent mutation data. A simulation study is carried out to predict the effects of a new type of mutation that has so far not been made in <it>Arabidopsis</it>, but that could be used as a severe test of the validity of the model. According to our predictions, the role of dimers is surprisingly important. Moreover, the functional loss of any dimer leads to one or more phenotypic alterations.</p
    corecore