30 research outputs found

    Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential

    Get PDF
    In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity

    Aspartic Acid Stabilized Iron Oxide Nanoparticles for Biomedical Applications

    No full text
    Aspartic acid stabilized iron oxide nanoparticles (A-IONPs) with globular shape and narrow size distribution were prepared by the co-precipitation method in aqueous medium. A quantum-mechanical approach to aspartic acid optimized structure displayed negative charged sites, relatively high dipole moment, and hydrophilicity, which recommended it for interaction with iron cations and surrounding water electrical dipoles. A-IONPs were characterized by TEM, XRD, ATR-FTIR, EDS, DSC, TG, DLS, NTA, and VSM techniques. Theoretical study carried out by applying Hartree-Fock and density functional algorithms suggested that some aspartic acid properties related to the interaction can develop with nanoparticles and water molecules. The results of experimental investigation showed that the mean value of particle physical diameters was 9.17 ± 2.2 nm according to TEM image analysis, the crystallite size was about 8.9 nm according to XRD data, while the magnetic diameter was about 8.8 nm, as was determined from VSM data interpretation with Langevin’s theory. The A-IONP suspension was characterized by zeta-potential of about −11.7 mV, while the NTA investigation revealed a hydrodynamic diameter of 153.9 nm. These results recommend the A-IONP suspension for biomedical applications

    Impact of Magnetite Nanoparticles Coated with Aspartic Acid on the Growth, Antioxidant Enzymes Activity and Chlorophyll Content of Maize

    No full text
    In recent decades, magnetite nanoparticles received greater attention in nanobiotechnology due to wide applications. This study presents the influence of the oxidative stress caused by magnetite nanoparticles coated with aspartic acid (A-MNP) of 9.17 nm mean diameter size, on maize (Zea mays) seedlings, in terms of growth, enzymatic activity and chlorophyll content as evaluated in exposed plant tissues. Diluted suspensions of colloidal magnetite nanoparticles stabilized in water were added to the culture medium of maize seeds, such as to equate nanoparticle concentrations varying from 0.55 mg/L to 11 mg/L. The obtained results showed that the growth of maize was stimulated by increasing the level of A-MNPs. Plant samples treated with different concentrations of A-MNP proved increased activities of catalase and peroxidase, and chlorophyll content, as well. The exposure of plants to magnetite nanoparticles may induce oxidative stress, which activates the plant defense/antioxidant mechanisms

    Citric-acid-coated magnetite nanoparticles for biological applications

    No full text
    Water-based magnetic fluids, generally intended for biomedical applications, often have various coating molecules that make them stable and compatible with biological liquids. Magnetic fluids containing iron oxide particles have been prepared by a co-precipitation method, using citric acid as stabilizer. The magnetic particles of the magnetic fluids were obtained by chemical precipitation from ferric ( FeCl3) and ferrous salts ( FeSO4 or FeCl2) in alkali medium (ammonia hydroxide). Citric acid was used to stabilize the magnetic-particle suspension. Physical tests were performed in order to determine various microstructural and rheological features. Transmission electron microscopy was the main investigation method for assessing the magnetic-particle size. The dimensional distribution of the magnetic-particle physical diameter was analyzed using the box-plot statistical method while infrared absorption spectra were used to study the colloidal particle structure. The magnetic-fluid density (picnometric method), viscosity (capillary method) and surface tension (stalagmometric method) were measured using standard methods

    A Study of Hyaluronic Acid’s Theoretical Reactivity and of Magnetic Nanoparticles Capped with Hyaluronic Acid

    No full text
    Hyaluronic acid (HA) has attracted much attention in tumor-targeted drug delivery due to its ability to specifically bind to the CD44 cellular receptor, which is widely expressed on cancer cells. We present HA-capped magnetic nanoparticles (HA-MNPs) obtained via the co-precipitation method, followed by the electrostatic adsorption of HA onto the nanoparticles’ surfaces. A theoretical study carried out with the PM3 method evidenced a dipole moment of 3.34 D and negatively charged atom groups able to participate in interactions with nanoparticle surface cations and surrounding water molecules. The ATR-FTIR spectrum evidenced the hyaluronic acid binding to the surface of the ferrophase, ensuring colloidal stability in the water dispersion. To verify the success of the synthesis and stabilization, HA-MNPs were also characterized using other investigation techniques: TEM, EDS, XRD, DSC, TG, NTA, and VSM. The results showed that the HA-MNPs had a mean physical size of 9.05 nm (TEM investigation), a crystallite dimension of about 8.35 nm (XRD investigation), and a magnetic core diameter of about 8.31 nm (VSM investigation). The HA-MNPs exhibited superparamagnetic behavior, with the magnetization curve showing saturation at a high magnetic field and a very small coercive field, corresponding to the net dominance of single-domain magnetic nanoparticles that were not aggregated with reversible magnetizability. These features satisfy the requirement for magnetic nanoparticles with a small size and good dispersibility for long-term stability. We performed some preliminary tests regarding the nanotoxicity in the environment, and some chromosomal aberrations were found to be induced in corn root meristems, especially in the anaphase and metaphase of mitotic cells. Due to their properties, HA-MNPs also seem to be suitable for use in the biomedical field
    corecore