27 research outputs found

    3D CATBraTS: Channel Attention Transformer for Brain Tumour Semantic Segmentation

    Get PDF
    Brain tumour diagnosis is a challenging task yet crucial for planning treatments to stop or slow the growth of a tumour. In the last decade, there has been a dramatic increase in the use of convolutional neural networks (CNN) for their high performance in the automatic segmentation of tumours in medical images. More recently, Vision Transformer (ViT) has become a central focus of medical imaging for its robustness and efficiency when compared to CNNs. In this paper, we propose a novel 3D transformer named 3D CATBraTS for brain tumour semantic segmentation on magnetic resonance images (MRIs) based on the state-of-the-art Swin transformer with a modified CNN-encoder architecture using residual blocks and a channel attention module. The proposed approach is evaluated on the BraTS 2021 dataset and achieved quantitative measures of the mean Dice similarity coefficient (DSC) that surpasses the current state-of-the-art approaches in the validation phase

    Comparative performance between human and automated face recognition systems, using CCTV imagery, different compression levels and scene parameters

    Get PDF
    In this investigation we identify relationships between human and automated face recognition systems with respect to compression. Further, we identify the most influential scene parameters on the performance of each recognition system. The work includes testing of the systems with compressed Closed-Circuit Television (CCTV) footage, consisting of quantified scene (footage) parameters. Parameters describe the content of scenes concerning camera to subject distance, facial angle, scene brightness, and spatio-temporal busyness. These parameters have been previously shown to affect the human visibility of useful facial information, but not much work has been carried out to assess the influence they have on automated recognition systems. In this investigation, the methodology previously employed in the human investigation is adopted, to assess performance of three different automated systems: Principal Component Analysis, Linear Discriminant Analysis, and Kernel Fisher Analysis. Results show that the automated systems are more tolerant to compression than humans. In automated systems, mixed brightness scenes were the most affected and low brightness scenes were the least affected by compression. In contrast for humans, low brightness scenes were the most affected and medium brightness scenes the least affected. Findings have the potential to broaden the methods used for testing imaging systems for security applications

    Evaluation of different chrominance models in the detection and reconstruction of faces and hands using the growing neural gas network

    Get PDF
    Physical traits such as the shape of the hand and face can be used for human recognition and identifcation in video surveillance systems and in biometric authentication smart card systems, as well as in personal health care. However, the accuracy of such systems sufers from illumination changes, unpredictability, and variability in appearance (e.g. occluded faces or hands, cluttered backgrounds, etc.). This work evaluates diferent statistical and chrominance models in diferent environments with increasingly cluttered backgrounds where changes in lighting are common and with no occlusions applied, in order to get a reliable neural network reconstruction of faces and hands, without taking into account the structural and temporal kinematics of the hands. First a statistical model is used for skin colour segmentation to roughly locate hands and faces. Then a neural network is used to reconstruct in 3D the hands and faces. For the fltering and the reconstruction we have used the growing neural gas algorithm which can preserve the topology of an object without restarting the learning process. Experiments conducted on our own database but also on four benchmark databases (Stirling’s, Alicante, Essex, and Stegmann’s) and on deaf individuals from normal 2D videos are freely available on the BSL signbank dataset. Results demonstrate the validity of our system to solve problems of face and hand segmentation and reconstruction under diferent environmental conditions

    A case study in identifying acceptable bitrates for human face recognition tasks

    Get PDF
    Face recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to recognize a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information

    Fast 2D/3D object representation with growing neural gas

    Get PDF
    This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction

    Computational approaches to Explainable Artificial Intelligence:Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.</p

    Computational Approaches to Explainable Artificial Intelligence:Advances in Theory, Applications and Trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)
    corecore