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Abstract—Brain tumour diagnosis is a challenging task yet
crucial for planning treatments to stop or slow the growth of a
tumour. In the last decade, there has been a dramatic increase
in the use of convolutional neural networks (CNN) for their
high performance in the automatic segmentation of tumours in
medical images. More recently, Vision Transformer (ViT) has
become a central focus of medical imaging for its robustness and
efficiency when compared to CNNs. In this paper, we propose a
novel 3D transformer named 3D CATBraTS for brain tumour
semantic segmentation on magnetic resonance images (MRIs)
based on the state-of-the-art Swin transformer with a modified
CNN-encoder architecture using residual blocks and a channel
attention module. The proposed approach is evaluated on the
BraTS 2021 dataset and achieved quantitative measures of the
mean Dice similarity coefficient (DSC) that surpasses the current
state-of-the-art approaches in the validation phase.

Index Terms—CNN, Transformers, ViT, Semantic Segmenta-
tion

I. INTRODUCTION

A brain tumour is an abnormal growth of cells in the brain
that can be cancerous (malignant) or non-cancerous (benign).
There are over 100 types of brain tumours, which significantly
vary in shape and size depending on their type and other
factors namely the age and gender of the patient and at which
stage the tumour is. Primary brain tumours are categorised into
2 grades: Low-Grade Glioma (LGG) and High-Grade Glioma
(HGG). LGGs are benign brain tumours that tend to grow
slowly, while HGGs are malignant tumours that grow fast and
can damage brain tissue [1][2][3]. Characterisation of brain tu-
mours in terms of shape, size, location and volumetric analysis
is essential for surgical planning, progression prediction and
life expectancy [4]. Automated medical image segmentation
techniques can produce elaborated information imperative for
accurately representing and analysing brain tumours.

The past years have seen the rapid development of Con-
volutional Neural Networks (CNNs) such as Deep Residual
Learning (ResNet)[5] in healthcare for automated segmen-
tation of tumours in the brain and other organs [6]. CNNs

dominate the field because of their good performance and
accurate predictions and for their ability to extract features
and find patterns that are difficult to identify by traditional
approaches[7].

The field of automated medical imaging with artificial
intelligence (AI) is maturing, and we are witnessing a rapid
development of promising algorithms that tend to be more
robust and outperform traditional CNNs. The Attention-based
Transformer Network is one of these trending frameworks that
has introduced a new approach to solving Natural Language
Processing (NLP) and Computer Vision tasks[8]. In 2017,
Vaswani et al. introduced the first transformer neural network
for machine translation[9]. Transformers are neural networks
that rely on self-attention to handle global/long-range depen-
dencies. After the success of the self-attention approach, the
Brain Research team from Google applied minor modifications
to the transformer and used it for image recognition. The
refined version of the transformer is now known as Vision
Transformer (ViT)[10].

Inspired by the success of the Vision Transformer, novel
segmentation methods in medical imaging have been recently
published. In particular, the Swin UNEt TRansformers (Swin
UNETR), a ViT-CNN-based network, has been proposed for
the 3D semantic segmentation of brain tumours on multi-
modal magnetic resonance images (MRIs) achieving state-of-
the-art results in terms of segmentation accuracy[11][12].

In this paper, we propose a novel model named Channel
Attention Transformer for a 3-Dimensional MultiModal Brain
Tumour Segmentation (3D CATBraTs). 3D CATBraTs is a
modified version of the Swin UNETR following the encoder-
decoder architecture. There are several important areas where
this study makes an original contribution, which are:

• We introduce a novel network using ViT for a 3D seg-
mentation of brain tumours on multi-modal MRIs named
3D CATBraTs.



• We propose a modified CNN-encoder architecture using
residual blocks and a channel attention module.

• We show, through evaluation, that our model performs
better compared to the top-performing models in the
Brain Tumour Segmentation Challenge 2021 (BraTS
2021) validation phase [13], Swin UNETR, and the
SegResNet [14].

The rest of the paper is organised as follows. Section II
presents the two out-performing approaches in brain tumour
segmentation that will be used in the comparison with our
method in the results and evaluation section. Section III
describes the methodology of the proposed brain tumour seg-
mentation method. Section IV presents the quantitative results
and findings of our approach. Finally, section V provides the
conclusion of the proposed work.

II. RELATED WORK

During the past decade, there has been a huge advancement
in deep learning (DL) neural networks for computer vision. In
healthcare, these models were mostly dedicated to developing
an AI computer-aided diagnosis tool. Many diverse approaches
are used for this task, some of which are based on CNNs,
and others follow the Vision Transformers (ViTs) approach
[16]. We are mainly concerned with two of the top-performing
models in automated medical image segmentation, namely
Swin UNETR and SegResNet, which are presented in this
section.

CNNs are DL neural networks used for image classification
and other computer vision tasks. They consist of multiple
layers composed of convolutional layers, pooling layers, and
fully connected layers [17]. On the other hand, ViTs are a
type of Transformer-based architecture originally developed
for NLP [18]. They have been adapted for computer vision
by transforming the image into a sequence of patches and
processing them using the Transformer architecture. Unlike
CNNs, ViTs do not have any convolution or pooling layers
and rely on self-attention mechanisms to capture relationships
between the patches [19].

Swin Transformer (Swin-T) is a neural network designed
for a range of computer vision tasks that was introduced as a
primary ViT. Liu et al. proposed a hierarchical structure using
shifted windows for a robust pixel-level prediction[15]. Swin-
T presents different layers: the Patch Partition layer, which
splits an RGB image into non-overlapping patches; the Linear
Embedding layer, which takes the patches from the Patch
Partition layer and applies a linear transformation on an n-
dimensional concatenated features (raw pixel RGB values);
the Patch Merging layer, which reduces the number of patches
as the network gets deeper; and The Swin-T Block which
was designed with a self-attention module based on shifted
windows. Fig. 1 shows the architecture of a Swin-T. Following
the success of Swin-T, much attention has been drawn to it
with an increasing interest in its application for medical image
segmentation combined with state-of-the-art CNN models such
as the Swin UNETR.

Swin UNETR is based on the Swin-T merged with a CNN-
based encoder-decoder network. Swin UNETR has a U-shaped
architecture with an encoder and a decoder using residual
blocks. The architecture was specifically designed for a 3D se-
mantic segmentation of brain tumours[11]. The first step of the
network creates partitions of the input image using the Swin
Transformer to be fed to a four stages encoder. The encoded
feature representations are then sent to a CNN-based decoder
through skip connections at multiple resolutions [20][15]. The
results of the network were compared to competing networks,
including SegResNet, nnU-Net, and TransBTS. Interestingly,
Swin UNETR outperformed all the other models proving that
transformers with CNNs can produce better segmentation than
traditional CNN-based networks.

SegResNet1 is a CNN that follows the encoder-decoder
architecture [14]. Myronenko et al. used a Variational AutoEn-
coder (VAE)[21] branch to the encoder endpoint to optimise
the loss when using a small dataset. In SegResNet, the encoder
blocks have the same architecture as the ResNet blocks, where
downsampling is applied. After downsampling, the output of
the encoder is fed to the decoder to perform upsampling.
The structure of the decoder is similar to the encoder part
while the output image size of this phase is the same as the
original image size [5]. SegResNet has been applied to various
semantic segmentation tasks and has achieved competitive
performance compared to other state-of-the-art methods.

Swin UNETR and SegResNet are two top-ranking DL
networks that have shown promising results for 3D semantic
segmentation of brain tumours in the BraTS 2021 Challenge.
In this paper, we compared our results to those obtained with
these two state-of-the-art models to evaluate the performance
of our proposed 3D CATBraTs.

III. METHODOLOGY

We designed our model by modifying the encoder of the
Swin UNETR model using channel-wise attention Res blocks.
Fig. 2 provides the overall architecture of the proposed model.
Fig. 3 shows the architecture of the first level of the encoder.
All the levels in the encoder follow the same construction.
In more detail, the proposed network consists of several
components, which are:

• Input: The input to the network is a brain MRI scan
acquired using 4 different MRI modalities.

• Swin Transformer: is the main transformer component of
our model; it splits the input image into non-overlapping
patches using a patch-splitting module. The Swin Trans-
former processes the sequence of tokens and extracts
features from the input image [15]. This will generate
blocks of merged patches and features that will be fed
into the encoders block as shown in Fig. 2.

• Down-sampling: This phase is responsible for extracting
high-level features from the previous blocks’ output.
Our encoder consists of five modified Res blocks which

1https://docs.monai.io/en/stable/ modules/monai/networks/nets/segresnet.
html#SegResNet

https://docs.monai.io/en/stable/_modules/monai/networks/nets/segresnet.html#SegResNet
https://docs.monai.io/en/stable/_modules/monai/networks/nets/segresnet.html#SegResNet


Fig. 1. Architecture of a Swin Transformer, which consists of 4 stages [15].

Fig. 2. Overview of Enhanced Swin UNETR architecture. The 3D input image is flattened into patches. The Swin Transformer blocks extract features from
the patches and output blocks of merged patches and feature transformation. The output of the transformer is fed to a CNN encoder. The encoder consists
of our modified version of the Res blocks. The decoder uses features generated by the encoder using skip connections. The final stage outputs 3 channels,
denoted ET, WT, and TC, for Enhancing Tumour, Whole Tumour, and Tumour Core, respectively.

are enhanced with a Squeeze-and-Excitation channel-
attention layer. The architecture of the first encoding
block is represented in Fig. 3. The block consists of
several convolutional and activation layers. The first layer
is a 3D convolutional layer (Conv3D) with kernel size
3x3x3 and padding equals 1. This layer is responsible
for performing convolution over the input. Then it is
followed by a 3D Batch Normalisation layer (Batch-
Norm3d) and an activation layer such as LeakyReLU[22].
The LeakyReLU is concatenated to Conv3D and Batch-
Norm3d layers. The summation of these layers with
BatchNorm3d of a Conv3D is given as input to the
channel attention (ChannelSE) layer which is followed
by LeakyReLU to output the feature maps. ChannelSE
is a channel-wise attention layer that is formed of 2
layers: the global average pooling layer and a fully
connected (FC) layer [23]. Feature maps hold different
information learned from the input; for example, feature
maps learning edges are more important than feature

maps learning background representations. Hence, it is
crucial to let the model decide which channel to focus on.
With the channel-attention layer, we scale each channel
based on its importance by dynamically utilising the
dependencies between features, which will eventually
improve the overall accuracy of the model. The output
of the first block is H×W ×D×48 while the last block
is H

32 × W
32 × D

32 × 768
• Skip connections: A skip connection from the corre-

sponding encoder layer helps to preserve low-level fea-
tures in the image [24].

• Up-sampling: this phase uses the features generated by
the encoder using skip connections and up-samples it
back to the original resolution. This phase consists of
five Res blocks [20]. The input of each of the decoding
blocks is the output of the previous blocks and the output
of the related encoding block with the exception of the
first decoder block, which takes as input the output of
the last encoder block and the last stage output of the



Fig. 3. 3D CATBraTs Encoding Block. ChannelSE is a channel-attention
layer.

Swin-T.
• Output: The final output is the segmentation of the

Enhancing Tumour (ET), Tumour Core (TC), and Whole
Tumour (WT) [25].

A. Dataset

We used the BraTS 20212 dataset for training and evaluating
the model [26] [25] [27]. The dataset includes multi-parametric
MRI (mpMRI) scans of 1251 cases diagnosed with brain
tumours. The MRI scans were acquired using four different
contrast MRI modalities: native T1, post-contrast T1-weighted
(T1Gd), T2-Weighted (T2), and fluid-attenuated inversion re-
covery (T2-Flair). All images were manually labelled and
reviewed by neuro-radiologists to identify the ground truth lo-
cation of the tumour on each of the modalities. The labelled re-
gions are the Enhancing Tumour (ET), tumour necrosis (NCR)
or tumour core (TC), and the whole tumour (WT), which
includes both TC and ED (peritumoral edematous/invaded
tissue). The MICCAI BraTS 2021 dataset is a high-quality
dataset where the images are pre-processed by performing nor-
malisation, histogram normalisation, interpolation to a uniform
isotropic resolution, and skull stripping. The original height
and width of the images are 240 × 240 with 155 slices for
each of the modalities. We divided the dataset into 1001 cases
used for training and 250 cases for validation.

B. Implementation Details

We implemented our model in Python using MONAI3[28].
All models were trained and evaluated on an Acer Predator
core i9 processor, 32 GB RAM, NVIDIA GeForce RTX
3080 10 GB. We used AdamW as an optimiser with an
initial learning rate of 5e-5, progressively decreasing using the
CosineAnnealingLR scheduler [29]. Regarding the loss func-
tion, we used the Dice loss function that can be computed as
the complement of the Dice similarity coefficient with respect
to 1. This loss function is useful in handling imbalanced data.

2https://www.synapse.org/#!Synapse:syn27046444/wiki/616992
3https://docs.monai.io/en/stable/api.html

Feature size was set at 48, and the dropping rate was at zero.
We trained all models for 100 epochs on cropped MRIs with
image size 128× 128× 96 and batch size of 1.

IV. RESULTS AND DISCUSSION

In order to assess the 3D CATBraTs neural network, we
performed a quantitative analysis of the proposed method as
well as of Swin UNETR [11] and SegResNet [14]. We trained
the models using the same hyper-parameters, such as learning
rate and batch size and then fine-tuned them until we obtained
an optimal model. We used the BraTS 2021 dataset to evaluate
the segmentation performance of each of the methods in the
evaluation phase. In terms of the evaluation metric, we used the
mean Dice similarity coefficient (DSC), which is widely used
in various medical imaging tasks. DCS measures the overlap
between two masks and can be calculated using

DSC(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

where X and Y are the masks from ground truth and predicted
by a model [30].

Table I provides an overview of the results. The SegResNet
scored the lowest Dice coefficient compared to Swin UNETR
and to our approach. SegResNet achieved a mean DSC of
0.706, and 0.634, 0.704, and 0.780 for ET, TC, and WT,
respectively. On the other hand, the mean DSC of Swin UN-
ETR was 0.776, while our approach attained 0.834. Further,
the proposed method recorded a notable improvement in each
of the classes in comparison with the other architectures,
achieving a DSC of 0.826 (ET), 0.799 (TC), and 0.876 (WT)
whereas Swin UNETR achieved 0.780 (ET), 0.731 (TC), and
0.817 (WT). The overall validation DSC and the average loss
plots of our model are shown in Fig. 5.

The results indicate that our method outperformed the com-
peting method by 5.8%, 4.6%, 6.8%, and 5.9% for mean DSC
of ET, TC, and WT, respectively. This comparison provides
important insights into CNN transformers showing that they
can outrank native CNNs. Furthermore, some visual results
are provided in Fig.4 where examples of MRI slices from
three different patients are displayed. The figure shows the
comparison of the ground truth of the brain tumour for the
three categories and the corresponding segmentation obtained
with the proposed automated segmentation method.

TABLE I
VALIDATION RESULTS OF OUR MODEL, SEGRESNET, AND SWIN UNETR

MODELS ON THE BRATS 2021 DATASET.

DSC
Network Mean±std ET TC WT

SegResNet 0.706 ± 0.317 0.634 0.704 0.780
Swin UNETR 0.776 ± 0.069 0.780 0.731 0.817

Our Model 0.834 ± 0.133 0.826 0.799 0.876

V. CONCLUSION

This paper proposes a novel Swin-T model based on CNN
encoder-decoder architecture for 3D segmentation of brain

https://www.synapse.org/#!Synapse:syn27046444/wiki/616992
https://docs.monai.io/en/stable/api.html


Fig. 4. Examples of images from three different cases showing the brain tumour categorised as Tumour Core (TC), Whole Tumour (WT), and Enhancing
Tumour (ET). Ground truth and the predictions of the proposed model are shown with DSC.

Fig. 5. The plot to the left is for the average training loss obtained by our
method. The plot to the right shows the overall validation DSC.

tumours on multi-modal MRIs named 3D CATBraTs. The
proposed model was inspired by the state-of-the-art Swin
UNETR. The proposed modification on the encoder based on
a channel-attention Res block showed increased performance
in terms of tumour segmentation accuracy. We validated our
results on the BraTS 2021 dataset, and we found that our
method outperformed current state-of-the-art approaches in the
validation phase.
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