75 research outputs found

    Number transcoding in bilinguals—A transversal developmental study

    Get PDF
    Number transcoding is the cognitive task of converting between different numerical codes (i.e. visual “42”, verbal “forty-two”). Visual symbolic to verbal transcoding and vice versa strongly relies on language proficiency. We evaluated transcoding of German-French bilinguals from Luxembourg in 5th, 8th, 11th graders and adults. In the Luxembourgish educational system, children acquire mathematics in German (LM1) until the 7th grade, and then the language of learning mathematic switches to French (LM2). French `70s `80s `90s are less transparent than `30s `40s `50s numbers, since they have a base-20 structure, which is not the case in German. Transcoding was evaluated with a reading aloud and a verbal-visual number matching task. Results of both tasks show a cognitive cost for transcoding numbers having a base-20 structure (i.e. `70s, `80s and `90s), such that response times were slower in all age groups. Furthermore, considering only base-10 numbers (i.e. `30s `40s `50s), it appeared that transcoding in LM2 (French) also entailed a cost. While participants across age groups tended to read numbers slower in LM2, this effect was limited to the youngest age group in the matching task. In addition, participants made more errors when reading LM2 numbers. In conclusion, we observed an age-independent language effect with numbers having a base-20 structure in French, reflecting their reduced transparency with respect to the decimal system. Moreover, we find an effect of language of math acquisition such that transcoding is less well mastered in LM2. This effect tended to persist until adulthood in the reading aloud task, while in the matching task performance both languages become similar in older adolescents and young adults. This study supports the link between numbers and language, especially highlighting the impact of language on reading numbers aloud from childhood to adulthood

    Are parity and magnitude status of Arabic digits processed automatically? An EEG study using the fast periodic visual stimulation

    Get PDF
    Many studies have shown that humans can easily extract numerical characteristics of single digits such as numerical magnitude and parity status. We investigated whether spontaneous processing of magnitude or parity status can be observed when participants are passively presented with sequences of briefly displayed Arabic digits. We assessed the parity processing by presenting seven odd digit numbers followed by one even digit (and reverse) with a sinusoidal contrast modulation at a frequency of 10HZ in one-minute sequences. The same paradigm and frequencies were used to investigate magnitude processing (i.e. seven digits smaller than five followed by one digit larger than five; and reverse) and control condition (i.e. sequence of 1-4-6-9 followed by 2-3-7 or 8). We observed a strong EEG activation on right parietal electrodes and a weaker activation on left parietal electrodes in all conditions. Left and right activations were stronger in the parity than in the other conditions, reflecting an automatic retrieval of parity information conveyed by the Arabic digits. The weaker activation during the magnitude task could reflect a more complicated access of the information corresponding to magnitude status. Right activations during the control task could be due to the fact that subjects can quickly learn to categorize numbers arbitrarily. These neuronal activation patterns are consistent with the neuro-imaging literature describing the localization of basic numerical processing. Our findings indicate that magnitude and parity status are extracted automatically from Arabic digits, even when numerical stimuli are presented without instructions at a high presentation rate

    Single-dose cholera vaccine in response to an outbreak in Zambia

    Get PDF
    Producción CientíficaKilled oral cholera vaccines (OCVs) are part of the standard response package to a cholera outbreak, although the two-dose regimen of vaccines that has been prequalified by the World Health Organization (WHO) poses challenges to timely and efficient reactive vaccination campaigns.1 Recent data suggest that the first dose alone provides short-term protection, similar to that of two doses, which may largely dictate the effect of OCVs during epidemic

    GENESIS: Co-location of Geodetic Techniques in Space

    Get PDF
    Improving and homogenizing time and space reference systems on Earth and, more directly, realizing the Terrestrial Reference Frame (TRF) with an accuracy of 1mm and a long-term stability of 0.1mm/year are relevant for many scientific and societal endeavors. The knowledge of the TRF is fundamental for Earth and navigation sciences. For instance, quantifying sea level change strongly depends on an accurate determination of the geocenter motion but also of the positions of continental and island reference stations, as well as the ground stations of tracking networks. Also, numerous applications in geophysics require absolute millimeter precision from the reference frame, as for example monitoring tectonic motion or crustal deformation for predicting natural hazards. The TRF accuracy to be achieved represents the consensus of various authorities which has enunciated geodesy requirements for Earth sciences. Today we are still far from these ambitious accuracy and stability goals for the realization of the TRF. However, a combination and co-location of all four space geodetic techniques on one satellite platform can significantly contribute to achieving these goals. This is the purpose of the GENESIS mission, proposed as a component of the FutureNAV program of the European Space Agency. The GENESIS platform will be a dynamic space geodetic observatory carrying all the geodetic instruments referenced to one another through carefully calibrated space ties. The co-location of the techniques in space will solve the inconsistencies and biases between the different geodetic techniques in order to reach the TRF accuracy and stability goals endorsed by the various international authorities and the scientific community. The purpose of this white paper is to review the state-of-the-art and explain the benefits of the GENESIS mission in Earth sciences, navigation sciences and metrology.Comment: 31 pages, 9 figures, submitted to Earth, Planets and Space (EPS

    Theia: Faint objects in motion or the new astrometry frontier

    Get PDF

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio
    corecore