848 research outputs found
GET: A generic electronics system for TPCs and nuclear physics instrumentation
General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented
The Ever Changing Circumstellar Nebula Around UW Centauri
We present new images of the reflection nebula surrounding the R Coronae
Borealis Star, UW Cen. This nebula, first detected in 1990, has changed its
appearance significantly. At the estimated distance of UW Cen, this nebula is
approximately 0.6 ly in radius so the nebula cannot have physically altered in
only 8 years. Instead, the morphology of the nebula appears to change as
different parts are illuminated by light from the central star modulated by
shifting thick dust clouds near its surface. These dust clouds form and
dissipate at irregular intervals causing the well-known declines in the R
Coronae Borealis (RCB) stars. In this way, the central star acts like a
lighthouse shining through holes in the dust clouds and lighting up different
portions of the nebula. The existence of this nebula provides clues to the
evolutionary history of RCB stars possibly linking them to the Planetary
Nebulae and the final helium shell flash stars.Comment: To be published in ApJ Letters. 5 pages, 3 figures (2 in color
Study of the Fusion-Fission Process in the Reaction
Fusion-fission and fully energy-damped binary processes of the
Cl+Mg reaction were investigated using particle-particle
coincidence techniques at a Cl bombarding energy of E
8 MeV/nucleon. Inclusive data were also taken in order to determine the partial
wave distribution of the fusion process. The fragment-fragment correlation data
show that the majority of events arises from a binary-decay process with a
relatively large multiplicity of secondary light-charged particles emitted by
the two primary excited fragments in the exit channel. No evidence is observed
for ternary-breakup processes, as expected from the systematics recently
established for incident energies below 15 MeV/nucleon and for a large number
of reactions. The binary-process results are compared with predictions of
statistical-model calculations. The calculations were performed using the
Extended Hauser-Feshbach method, based on the available phase space at the
scission point of the compound nucleus. This new method uses
temperature-dependent level densities and its predictions are in good agreement
with the presented experimental data, thus consistent with the fusion-fission
origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the
European Physical Journal A - Hadrons and Nucle
One, two, or three stars? An investigation of an unusual eclipsing binary candidate undergoing dramatic period changes
We report our investigation of 1SWASP J234401.81-212229.1, a variable with a 18 461.6 s period. After identification in a 2011 search of the SuperWASP archive for main-sequence eclipsing binary candidates near the distribution's short-period limit of ~0.20 d, it was measured to be undergoing rapid period decrease in our earlier work, though later observations supported a cyclic variation in period length. Spectroscopic data obtained in 2012 with the Southern African Large Telescope did not, however, support the interpretation of the object as a normal eclipsing binary. Here, we consider three possible explanations consistent with the data: a single-star oblique rotator model in which variability results from stable cool spots on opposite magnetic poles; a two-star model in which the secondary is a brown dwarf; and a three-star model involving a low-mass eclipsing binary in a hierarchical triple system. We conclude that the latter is the most likely model
The spin-orbit alignment of the transiting exoplanet WASP-3b from Rossiter-McLaughlin observations
We present an observation of the Rossiter-McLaughlin effect for the planetary
system WASP-3. Radial velocity measurements were made during transit using the
SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The
shape of the effect shows that the sky-projected angle between the stellar
rotation axis and planetary orbital axis (lambda) is small and consistent with
zero within 2 sigma; lambda = 15 +10/-9 deg. WASP-3b joins the ~two-thirds of
planets with measured spin-orbit angles that are well aligned and are thought
to have undergone a dynamically-gentle migration process such as planet-disc
interactions. We find a systematic effect which leads to an anomalously high
determination of the projected stellar rotational velocity (vsini = 19.6
+2.2/-2.1 km/s) compared to the value found from spectroscopic line broadening
(vsini = 13.4 +/- 1.5 km/s). This is thought to be caused by a discrepancy in
the assumptions made in the extraction and modelling of the data. Using a model
developed by Hirano et al. (2009) designed to address this issue, we find vsini
to be consistent with the value obtained from spectroscopic broadening
measurements (vsini = 15.7 +1.4/-1.3 km/s).Comment: 7 pages, 3 figures, published in MNRAS 405 (2010) 1867-1872. Update
includes discussion on differential rotaation and correction of typo
Qatar-1b: a hot Jupiter orbiting a metal-rich K dwarf star
We report the discovery and initial characterisation of Qatar-1b, a hot
Jupiter orbiting a metal-rich K dwarf star, the first planet discovered by the
Alsubai Project exoplanet transit survey. We describe the strategy used to
select candidate transiting planets from photometry generated by the Alsubai
Project instrument. We examine the rate of astrophysical and other false
positives found during the spectroscopic reconnaissance of the initial batch of
candidates. A simultaneous fit to the follow-up radial velocities and
photometry of Qatar-1b yield a planetary mass of 1.09+/-0.08 Mjup and a radius
of 1.16+/-0.05 Rjup. The orbital period and separation are 1.420033 days and
0.0234 AU for an orbit assumed to be circular. The stellar density, effective
temperature and rotation rate indicate an age greater than 4 Gyr for the
system.Comment: 8 pages, 5 figures, submitted to Monthly Notices of the Royal
Astronomical Societ
What are the hot R Coronae Borealis stars?
We investigate the evolutionary status of four stars: V348 Sgr, DY Cen, and MV Sgr in the Galaxy and HV 2671 in the LMC. These stars have in common random deep declines in visual brightness, which are characteristic of R Coronae Borealis (RCB) stars. RCB stars are typically cool hydrogen-deficient supergiants. The four stars studied in this paper are hotter (Teff = 15–20 kK) than the majority of RCB stars (Teff = 5000–7000 K). Although these are commonly grouped together as the hot RCB stars they do not necessarily share a common evolutionary history. We present new observational data and an extensive collection of archival and previously published data that is reassessed to ensure internal consistency. We find temporal variations of various properties on different timescales that will eventually help us to uncover the evolutionary history of these objects. DY Cen and MV Sgr have typical RCB helium abundances, which exclude any currently known post–asymptotic giant branch (post-AGB) evolutionary models. Moreover, their carbon and nitrogen abundances present us with further problems for their interpretation. V348 Sgr and HV 2671 are in general agreement with a born-again post-AGB evolution, and their abundances are similar to Wolf-Rayet central stars of planetary nebulae (PNs). The three Galactic stars in the sample have circumstellar nebulae, which produce forbidden line radiation (for HV 2671 we have no information). V348 Sgr and DY Cen have low-density, low-expansion velocity nebulae (resolved in the case of V348 Sgr), while MV Sgr has a higher density, higher expansion velocity nebula. All three stars, on the other hand, have split emission lines, which indicate the presence of an equatorial bulge but not of a Keplerian disk. In addition, the historical light curves for the three Galactic hot RCB stars show evidence for a significant fading in their maximum-light brightnesses of ~1 mag over the last 70 yr. From this we deduce that their effective temperatures increased by a few thousand degrees. If V348 Sgr is a born-again star, as we presume, this means that the star is returning from the born-again AGB phase to the phase of a central star of PN. Spectroscopically, no dramatic change is observed over the last 50 years for V348 Sgr and MV Sgr. However, there is some evidence that the winds of V348 Sgr and DY Cen have increased in strength in the last decade. HV 2671, located in the LMC, has not been analyzed in detail but at 5 Å… resolution is almost identical to V348 Sgr. Through the bolometric correction derived for V348 Sgr and the known distance, we can estimate the absolute ν magnitude of HV 2671 (Mν = -3.0 mag) and its bolometric luminosity (~6000 L⊙)
The Anomalous Infrared Emission of Abell 58
We present a new model to explain the excess in mid and near infrared
emission of the central, hydrogen poor dust knot in the planetary nebula (PN)
Abell 58. Current models disagree with ISO measurement because they apply an
average grain size and equilibrium conditions only. We investigate grain size
distributions and temperature fluctuations affecting infrared emission using a
new radiative transfer code and discuss in detail the conditions requiring an
extension of the classical description. The peculiar infrared emission of V605
Aql, the central dust knot in Abell 58, has been modeled with our code. V605
Aql is of special interest as it is one of only three stars ever observed to
move from the evolutionary track of a central PN star back to the post-AGB
state.Comment: 17 pages, 4 figures; accepted and to be published in Ap
WASP-43b: The closest-orbiting hot Jupiter
We report the discovery of WASP-43b, a hot Jupiter transiting a K7V star
every 0.81 d. At 0.6-Msun the host star has the lowest mass of any star hosting
a hot Jupiter. It also shows a 15.6-d rotation period. The planet has a mass of
1.8 Mjup, a radius of 0.9 Rjup, and with a semi-major axis of only 0.014 AU has
the smallest orbital distance of any known hot Jupiter. The discovery of such a
planet around a K7V star shows that planets with apparently short remaining
lifetimes owing to tidal decay of the orbit are also found around stars with
deep convection zones.Comment: 4 page
- …