66 research outputs found

    Genomic parasites or symbionts? Modeling the effects of environmental pressure on transposition activity in asexual populations

    Get PDF
    AbstractTransposable elements are DNA segments capable of persisting in host genomes by self-replication in spite of deleterious mutagenic effects. The theoretical dynamics of these elements within genomes has been studied extensively, and population genetic models predict that they can invade and maintain as a result of both intra-genomic and inter-individual selection in sexual species. In asexuals, the success of selfish DNA is more difficult to explain. However, most theoretical work assumes constant environment. Here, we analyze the impact of environmental change on the dynamics of transposition activity when horizontal DNA exchange is absent, based on a stochastic computational model of transposable element proliferation. We argue that repeated changes in the phenotypic optimum in a multidimensional fitness landscape may induce explosive bursts of transposition activity associated with faster adaptation. However, long-term maintenance of transposition activity is unlikely. This could contribute to the significant variation in the transposable element copy number among closely related species

    Multiple invasions of Gypsy and Micropia retroelements in genus Zaprionus and melanogaster subgroup of the genus Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Zaprionus </it>genus shares evolutionary features with the <it>melanogaster </it>subgroup, such as space and time of origin. Although little information about the transposable element content in the <it>Zaprionus </it>genus had been accumulated, some of their elements appear to be more closely related with those of the <it>melanogaster </it>subgroup, indicating that these two groups of species were involved in horizontal transfer events during their evolution. Among these elements, the <it>Gypsy </it>and the <it>Micropia </it>retroelements were chosen for screening in seven species of the two <it>Zaprionus </it>subgenera, <it>Anaprionus </it>and <it>Zaprionus</it>.</p> <p>Results</p> <p>Screening allowed the identification of diverse <it>Gypsy </it>and <it>Micropia </it>retroelements only in species of the <it>Zaprionus </it>subgenus, showing that they are transcriptionally active in the sampled species. The sequences of each retroelement were closely related to those of the <it>melanogaster </it>species subgroup, and the most parsimonious hypothesis would be that 15 horizontal transfer events shaped their evolution. The <it>Gypsy </it>retroelement of the <it>melanogaster </it>subgroup probably invaded the <it>Zaprionus </it>genomes about 11 MYA. In contrast, the <it>Micropia </it>retroelement may have been introduced into the <it>Zaprionus </it>subgenus and the <it>melanogaster </it>subgroup from an unknown donor more recently (~3 MYA).</p> <p>Conclusion</p> <p><it>Gypsy </it>and <it>Micropia </it>of <it>Zaprionus </it>and <it>melanogaster </it>species share similar evolutionary patterns. The sharing of evolutionary, ecological and ethological features probably allowed these species to pass through a permissive period of transposable element invasion, explaining the proposed waves of horizontal transfers.</p

    The Genome Sequence of the Grape Phylloxera Provides Insights into the Evolution, Adaptation, and Invasion Routes of an Iconic Pest

    Get PDF
    Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. Conclusions: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture

    Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes

    No full text
    During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third

    12. Interrelations entre le biologique et l'Ă©cosystĂšme

    No full text
    Depuis le dĂ©but du XXe siĂšcle, la relation gĂ©notype*/phĂ©notype* est au cƓur de nombreux dĂ©bats et questions. Le gĂ©nome d’un individu est l’ensemble du matĂ©riel gĂ©nĂ©tique abritĂ© par chacune de ces cellules, toutes les cellules ayant le mĂȘme gĂ©nome. Le phĂ©notype est, quant Ă  lui, l’ensemble des caractĂšres observables d’un individu. Ces caractĂšres peuvent ĂȘtre morphologiques, physiologiques, molĂ©culaires, comportementaux
 Aujourd’hui, l’étude de la relation entre ces deux entitĂ©s revient sur le ..

    Variabilite genetique des populations naturelles de Drosophila melanogaster et de Drosophila simulans

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Analyse de la diversité moléculaire de populations d'abeilles de la lignée ouest-méditerranéenne (Apis mellifera mellifera) dans le but de la conservation

    No full text
    L abeille mellifĂšre (Apis mellifera, L.) est divisĂ©e en quatre lignĂ©es Ă©volutives (M : Ouest-MĂ©diterranĂ©enne, A : Africaine, C : Nord-MĂ©diterranĂ©enne et O : Orientale), elles-mĂȘmes divisĂ©es en au moins 26 sous-espĂšces. Ces lignĂ©es et sous-espĂšces Sont caractĂ©risĂ©es par une trĂšs forte structuration gĂ©ographique. Cette structure est le fruit de milliers d annĂ©es d Ă©volution (depuis les derniĂšres glaciations jusqu Ă  nos jours).Parmi les diffĂ©rentes sous-espĂšces, on distingue notamment Apis mellifera mellifera (A. m. mellifera), Ă©galement connue sous le nom de Abeille noire . Cette sous-espĂšce est naturellement prĂ©sente en France et en Europe du Nord.Pour diverses raisons, des sous-espĂšces non locales, appartenant en particulier Ă  la lignĂ©e C sont importĂ©es depuis les annĂ©es 60 en France.Ces importations, souvent massives, ont tendance Ă  dĂ©structurer la rĂ©partition gĂ©ographique de l espĂšce et pourraient mener Ă  une perte de la sous-espĂšce locale et de ses caractĂ©ristiques spĂ©cifiques.Des conservatoires d A. m. mellifera, gĂ©rĂ©s par des associations d apiculteurs, ont progressivement vu le jour en Europe, pour limiter les effets des importations. Toutefois, aucun cahier des charges , couplant l aspect scientifique de la conservation avec l apiculture, n a encore Ă©tĂ© Ă©mis.La prĂ©sente thĂšse a donc permis, par l Ă©tude de congrĂ©gation de mĂąles d abeilles, de caractĂ©riser et valider des conservatoires EuropĂ©ens.Un protocole, quant Ă  la mise en place et au suivi scientifique ainsi qu apicole de ces conservatoires a Ă©tĂ© proposĂ©.Enfin, une Ă©tude prĂ©liminaire du fonctionnement reproducteur d une population d abeilles a Ă©tĂ© menĂ©e en Ile-de-France. Cette Ă©tude a Ă©tĂ© entreprise dans le but d apporter de nouvelles informations pour les programmes de conservation de l espĂšce et de l Abeille noire.Il ressort de cette thĂšse que la majoritĂ© des conservatoires Ă©tudiĂ©s prĂ©sentent un niveau d introgression (par la lignĂ©e Nord-MĂ©diterranĂ©enne) suffisamment faible et une diversitĂ© gĂ©nĂ©tique suffisante pour ĂȘtre acceptĂ©s comme conservatoires. Il faut cependant maintenir le faible niveau d introgression, d une part, et, d autre part, la diversitĂ© gĂ©nĂ©tique suffisante, ces critĂšres Ă©tant indispensable pour tout conservatoire d A. m. mellifera.Il apparait Ă©galement que l isolement gĂ©ographique n est pas obligatoire, voire mĂȘme non recommandĂ©, pour l Ă©tablissement d un conservatoire. Mais, il est important de caractĂ©riser l ensemble des populations situĂ©es autour des zones conservatoires. Cette caractĂ©risation a, en effet, pour but d estimer et de limiter les risques d introgression par des colonies non locales.Plusieurs hypothĂšses Ă©mises au cours de cette analyse rĂ©futeraient les conclusions proposĂ©es dans des Ă©tudes prĂ©cĂ©demment rĂ©alisĂ©es sur l espĂšce A. mellifera.En effet, il semblerait que les faux bourdons ne se rendent pas Ă  la congrĂ©gation de mĂąles la plus proche. Toutefois, une Ă©tude plus approfondie du comportement reproducteur doit ĂȘtre rĂ©alisĂ©e afin de valider ou d infirmer cette hypothĂšse.Enfin, des essaims naturels pourraient ĂȘtre prĂ©sents dans la rĂ©gion Ile-de-France. Ces essaims Ă©taient considĂ©rer comme complĂštement disparus, Ă  cause de l invasion du parasite Varroa destructor en Europe. Cette nouvelle hypothĂšse doit cependant ĂȘtre confirmĂ©e par d autres analyses plus approfondie. La prĂ©sence de ces essaims naturels serait trĂšs encourageante pour la conservation d A. m. mellifera, mais Ă©galement de l espĂšce en gĂ©nĂ©rale.The honeybee species (Apis mellifera, L.) is divided in four evolutionary lineages (M: West-Mediterranean, A: African, C: North-Mediterranean and O: Oriental). These lineages are also divided in, at least, 26 subspecies which show a very high geographical structure. This structure is the result of more than thousand years of evolution (from the last Ice Ages to nowadays).Among the different subspecies, one is naturally found in France and Northern Europe: Apis mellifera mellifera (A. m. mellifera), also known as the Black Honeybee.For many reasons, non local subspecies, belonging to the C evolutionary lineage, have been imported in France since the beginning of the sixties.These massive importations result in the tendency of losing of the Apis mellifera geographical repartition and could lead to the loss of the local subspecies (A. m. mellifera) and its specific traits.Many A. m. mellifera conservatories, managed by beekeepers, have been initiated in Europe to compensate the importation effects on the subspecies. However, no specifications, combining a scientific approach and beekeeping, regarding the setup and monitoring of a conservation center have been proposed.The present study genetically characterized and validated, by the analysis of drone congregation areas, different European conservatories.A protocol regarding the setup and, scientific and beekeeping, monitoring of conservation centers have been proposed.Finally, a preliminary study, regarding the specific honeybee mating system and its implication on conservation programs, has been initiated in the Ile-de-France region.This thesis presents interesting results.First, the conservatories analyzed show a level of introgression, by C lineage, low enough and a genetic diversity high enough to be validated as A. m. mellifera conservation centers. But, the introgression cannot increase, and/or the genetic diversity cannot decrease, these criterions are indeed necessary for any Black Honeybee conservation center.Second, the geographical isolation of conservatories is not needed, it could even be not recommended because of the possible loss of genetic diversity implied, to set up conservation centers. However, it is really important to genetically characterize the colonies surrounding the conservatory. This is, indeed, needed to estimate and limit the risk of introgression by non local colonies.Different hypotheses proposed is this thesis do not corroborate the conclusions of previous studies on A. mellifera.It seems that drones do not go to the closest drone congregation. But the question whether they go to another congregation or they do not have the same probability to join a congregation is not answer. This analysis has to be more precisely considered in further studies.The most striking result is the possible presence of feral swarms in the Ile-de-France region. These swarms were supposed to have disappeared because of the invasion of the parasite Varroa destructor in Europe. However, this new and interesting hypothesis has to be confirmed by more precise analyses. Nevertheless, the occurrence of feral swarms would be very encouraging for the conservation of A. m. mellifera, but also for the conservation of the whole species.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Génétique écologique et systématique du genre zaprionus (Diptera : Drosophilidae) (Approches Moléculaires et Morphologiques)

    No full text
    La génétique écologique de l espÚce invasive Zaprionus indianus et l histoire évolutive du genre Zaprionus ont été étudiées. Chez Z. indianus, la génétique d un nouveau caractÚre du genre, le nombre de soies mésosternales, a été analysée. La plasticité phénotypique de la taille du corps et des soies sternopleurales a été comparée chez les adultes vivant dans la nature et chez leur descendance élevée au laboratoire. L histoire de l'expansion géographique de Z. indianus a été construite en considérant l ADN mitochondriel de nombreuses populations. Cette étude a confirmé l origine afrotropicale de l espÚce et a montré que les populations introduites dans la région orientale étaient indépendantes de celles introduites plus récemment sur le continent américain. Traditionnellement, le genre Zaprionus était subdivisé en deux sous-genres. La phylogénie du sous-genre Zaprionus s.s. de la région afrotropicale a été analysée, en utilisant des données moléculaires et morphologiques. Une nouvelle méthode, appelée greffe morphologique , a été proposée pour résoudre le problÚme des données manquantes (ADN des spécimens anciens du muséum). Une révision complÚte des espÚces du sous-genre Anaprionus de la région orientale a été réalisée aussi mais en utilisant seulement des caractÚres morphologiques. Les résultats conduisent à des changements systématiques importants, et permettent aussi de porposer que l Afrique a été colonisée relativement récemment (7 ma) à partir d un propagule asiatique arrivée dans les ßles de l océan indien. Zaprionus devrait devenir un clade modÚle pour comprendre les mécanismes d adaptation et d évolution chez les drosophiles.The ecological genetics of the invasive drosophilid species, Zaprionus indianus, and the evolutionary history of the genus Zaprionus, have been investigated following two complementary approaches: molecular and morphological. In Z. indianus, genetics and developmental stability of a new generic character, the mesosternal bristle number, have been analyzed. Besides, developmental stability of body size and sternopleural bristles has been compared between wild-living flies and their laboratory offspring. In a second part of the thesis, the colonization history of Z. indianus has been reconstructed using mitochondrial DNA, which reconfirmed its Afrotropical origin and showed that older Oriental introduction was independent from the more recent colonization in the Americas. Traditionally, the genus Zaprionus has been subdivided into two subgenera. A phylogenetic revision has been conducted for the African subgenus Zaprionus s.s. using molecular and morphological data. A new method, called morphological grafting , has been proposed to resolve problems of missing data (DNA from old, museum specimens). Further, the phylogeny of the Oriental subgenus Anaprionus has also been revised, but using only morphological characters. This has resulted in many important systematic changes, and in hypothesizing a recent colonization of Africa (7 MYA) with an Oriental propagule via the islands of the Indian Ocean. In conclusion, the genus Zaprionus comprises nearly 70 species, many of which can be subject of experimental manipulations. It has to be considered as an important model clade for the study of adaptation, speciation and evolution of drosophilids.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Les effets de la sexualité sur la dynamique des éléments transposables

    No full text
    Le systÚme de reproduction est responsable de la diffusion des gÚnes dans les populations, il joue donc un rÎle essentiel dans l'évolution des espÚces ainsi qu'au niveau de l'architecture du génome et de la dynamique de ses composantes telles que les éléments transposables. Ces derniers sont des séquences d'ADN capables de se multiplier au sein des génomes indépendamment des effets qu'ils induisent. Présents dans tous les organismes vivants, les éléments transposables peuvent occuper une portion (trÚs) importante des génomes. Il est nécessaire de comprendre leur dynamique afin de mieux comprendre l'architecture et l'évolution des génomes. Les travaux effectués au cours de cette thÚse ont porté sur l'étude des effets du systÚme de reproduction de l'hÎte sur la dynamique des éléments transposables par le biais d'un modÚle implémenté dans un logiciel simulations DyET. Ce dernier permet de simuler la dynamique d'une famille d'éléments transposables des premiÚres étapes de l'invasion jusqu'au long terme - soit plusieurs dizaines de milliers de générations - au sein d'une population d'hÎte pouvant se reproduire selon différents modes tels que la panmixie, l'autogamie ou bien l'asexualité. L'exploration des différents jeux de paramÚtres a permis de mettre en évidence l'importance de la sexualité de l 'hÎte sur la dynamique des éléments transposables des premiÚres étapes de l'invasion jusqu'à long terme.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Modélisation de la dynamique évolutive des éléments transposables (naissance, vie et mort d'un parasite génomique)

    No full text
    Les Ă©lĂ©ments transposables sont l'un des constituants majeurs des gĂ©nomes; on les trouve chez la quasi-totalitĂ© des organismes vivants. Cependant, Ă  part dans quelques cas documentĂ©s de domestication molĂ©culaire , ils semblent s'y maintenir principalement grĂące Ă  leur propre capacitĂ© de multiplication, et on les considĂšre en gĂ©nĂ©ral comme des sĂ©quences d'ADN parasites . Le travail prĂ©sentĂ© dans cette thĂšse propose l'investigation d'un modĂšle d'Ă©volution d'une famille d'Ă©lĂ©ments transposables, implĂ©mentĂ© dans un logiciel de simulation. Les diffĂ©rentes phases du cycle de vie de l'Ă©lĂ©ment y sont Ă©tudiĂ©es, des toutes premiĂšres gĂ©nĂ©rations qui suivent son arrivĂ©e dans une nouvelle espĂšce, Ă  sa co-Ă©volution Ă  long terme avec les autres Ă©lĂ©ments transposables et les gĂšnes du gĂ©nome. Les rĂ©sultats proposĂ©s illustrent la complexitĂ© de l'Ă©volution de ces parasites gĂ©nomiques, et proposent plusieurs scĂ©narios Ă©volutifs rĂ©alistes. Dans la plupart des cas, une situation d'Ă©quilibre stable dans le temps semble Ă©cartĂ©e, et l'invasion d'une famille d'Ă©lĂ©ments transposables apparaĂźt ĂȘtre un processus dynamique qui dĂ©pend non seulement des caractĂ©ristiques de l'Ă©lĂ©ment, mais aussi des interactions qui peuvent se mettre en place entre le gĂ©nome de l'hĂŽte et l'Ă©lĂ©ment transposable.Transposable elements are one of the main components of the genomes, and they can be found in almost every living organism. However, except in a few "molecular domestication" events, they seem to maintain themselves in the genomes thanks to their own multiplication ability, and they are thus generally considered as "parasitic" DNA sequences. In the present work, we have investigated, through a simulation software, a population genetics model of a transposable element family. The different stages of the "life cycle" of the element have been studied, from the very first generations following its arrival in a new species, to its long-term co-evolution with the other elements and genes in the genome. The results presented here highlight the complexity of the evolution of these genomic parasites, and several realistic evolutionary scenarios can be proposed. In the most cases, a stable equilibrium state appears to be unlikely, and the invasion of a transposable elements family seems to be a dynamic process, depending not only on the features of the element, but also on the interactions existing between the host genome and its parasitic DNA sequences.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
    • 

    corecore