50 research outputs found

    Dynamics of Multiple Nuclei in Ashbya gossypii Hyphae Depend on the Control of Cytoplasmic Microtubules Length by Bik1, Kip2, Kip3, and Not on a Capture/Shrinkage Mechanism

    Get PDF
    The multinucleate growth mode of A. gossypii has resulted in a unique control of cytoplasmic MT dynamics. Our analyses of MT +tips behavior and cMT–cell cortex interactions show the necessity of A. gossypii to produce very long cMTs for nuclear migration to compensate the lack of MT capture/shrinkage mechanisms important in budding yeast

    Mechanism of nuclear movements in a multinucleated cell.

    Get PDF
    Multinucleated cells are important in many organisms, but the mechanisms governing the movements of nuclei sharing a common cytoplasm are not understood. In the hyphae of the plant pathogenic fungus Ashbya gossypii, nuclei move back and forth, occasionally bypassing each other, preventing the formation of nuclear clusters. This is essential for genetic stability. These movements depend on cytoplasmic microtubules emanating from the nuclei that are pulled by dynein motors anchored at the cortex. Using three-dimensional stochastic simulations with parameters constrained by the literature, we predict the cortical anchor density from the characteristics of nuclear movements. The model accounts for the complex nuclear movements seen in vivo, using a minimal set of experimentally determined ingredients. Of interest, these ingredients power the oscillations of the anaphase spindle in budding yeast, but in A. gossypii, this system is not restricted to a specific nuclear cycle stage, possibly as a result of adaptation to hyphal growth and multinuclearity

    The Ashbya Genome Database (AGD)—a tool for the yeast community and genome biologists

    Get PDF
    The Ashbya Genome Database (AGD) is a comprehensive online source of information covering genes from the filamentous fungus Ashbya gossypii. The database content is based upon comparative genome annotation between A.gossypii and the closely related budding yeast Saccharomyces cerevisiae taking both sequence similarity and synteny (conserved order and orientation) into account. Release 2 of AGD contains 4718 protein-encoding loci located across seven chromosomes. Information can be retrieved using systematic or standard locus names from A.gossypii as well as budding and fission yeast. Approximately 90% of the genes in the genome of A.gossypii are homologous and syntenic to loci of budding yeast. Therefore, AGD is a useful tool not only for the various yeast communities in general but also for biologists who are interested in evolutionary aspects of genome research and comparative genome annotation. The database provides scientists with a convenient graphical user interface that includes various locus search and genome browsing options, data download and export functionalities and numerous reciprocal links to external databases including SGD, MIPS, GeneDB, KEGG, GermOnline and Swiss-Prot/TrEMBL. AGD is accessible at http://agd.unibas.c

    A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae

    Get PDF
    In vivo time-lapse microscopy reveals that the number of peroxisomes in Saccharomyces cerevisiae cells is fairly constant and that a subset of the organelles are targeted and segregated to the bud in a highly ordered, vectorial process. The dynamin-like protein Vps1p controls the number of peroxisomes, since in a vps1Δ mutant only one or two giant peroxisomes remain. Analogous to the function of other dynamin-related proteins, Vps1p may be involved in a membrane fission event that is required for the regulation of peroxisome abundance. We found that efficient segregation of peroxisomes from mother to bud is dependent on the actin cytoskeleton, and active movement of peroxisomes along actin filaments is driven by the class V myosin motor protein, Myo2p: (a) peroxisomal dynamics always paralleled the polarity of the actin cytoskeleton, (b) double labeling of peroxisomes and actin cables revealed a close association between both, (c) depolymerization of the actin cytoskeleton abolished all peroxisomal movements, and (d) in cells containing thermosensitive alleles of MYO2, all peroxisome movement immediately stopped at the nonpermissive temperature. In addition, time-lapse videos showing peroxisome movement in wild-type and vps1Δ cells suggest the existence of various levels of control involved in the partitioning of peroxisomes

    Ashbya Genome Database 3.0: a cross-species genome and transcriptome browser for yeast biologists

    Get PDF
    BACKGROUND: The Ashbya Genome Database (AGD) 3.0 is an innovative cross-species genome and transcriptome browser based on release 40 of the Ensembl developer environment. DESCRIPTION: AGD 3.0 provides information on 4726 protein-encoding loci and 293 non-coding RNA genes present in the genome of the filamentous fungus Ashbya gossypii. A synteny viewer depicts the chromosomal location and orientation of orthologous genes in the budding yeast Saccharomyces cerevisiae. Genome-wide expression profiling data obtained with high-density oligonucleotide microarrays (GeneChips) are available for nearly all currently annotated protein-coding loci in A. gossypii and S. cerevisiae. CONCLUSION: AGD 3.0 hence provides yeast- and genome biologists with comprehensive report pages including reliable DNA annotation, Gene Ontology terms associated with S. cerevisiae orthologues and RNA expression data as well as numerous links to external sources of information. The database is accessible at

    Reinvestigation of the Saccharomyces cerevisiae genome annotation by comparison to the genome of a related fungus: Ashbya gossypii

    Get PDF
    BACKGROUND: The recently sequenced genome of the filamentous fungus Ashbya gossypii revealed remarkable similarities to that of the budding yeast Saccharomyces cerevisiae both at the level of homology and synteny (conservation of gene order). Thus, it became possible to reinvestigate the S. cerevisiae genome in the syntenic regions leading to an improved annotation. RESULTS: We have identified 23 novel S. cerevisiae open reading frames (ORFs) as syntenic homologs of A. gossypii genes; for all but one, homologs are present in other eukaryotes including humans. Other comparisons identified 13 overlooked introns and suggested 69 potential sequence corrections resulting in ORF extensions or ORF fusions with improved homology to the syntenic A. gossypii homologs. Of the proposed corrections, 25 were tested and confirmed by resequencing. In addition, homologs of nearly 1,000 S. cerevisiae ORFs, presently annotated as hypothetical, were found in A. gossypii at syntenic positions and can therefore be considered as authentic genes. Finally, we suggest that over 400 S. cerevisiae ORFs that overlap other ORFs in S. cerevisiae and for which no homolog can be detected in A. gossypii should be regarded as spurious. CONCLUSIONS: Although, the S. cerevisiae genome is rightly considered as one of the most accurately sequenced and annotated eukaryotic genomes, we have shown that it still benefits substantially from comparison to the completed sequence and syntenic gene map of A. gossypii, an evolutionarily related fungus. This type of approach will strongly support the annotation of more complex genomes such as the human and murine genomes

    Regulation of polarised growth in fungi

    Get PDF
    Polarised growth in fungi occurs through the delivery of secretory vesicles along tracks formed by cytoskeletal elements to specific sites on the cell surface where they dock with a multiprotein structure called the exocyst before fusing with the plasmamembrane. The budding yeast, Saccharomyces cerevisiae has provided a useful model to investigate the mechanisms involved and their control. Cortical markers, provided by bud site selection pathways during budding, the septin ring during cytokinesis or the stimulation of the pheromone response receptors during mating, act through upstream signalling pathways to localise Cdc24, the GEF for the rho family GTPase, Cdc42. Cdc42 in its GTP-bound activates a multiprotein protein complex called the polarisome which nucleates actin cables along which the secretory vesicles are transported to the cell surface. Hyphae can elongate at a rate orders of magnitude faster than the extension of a yeast bud, so understanding hyphal growth will require substantial modification of the yeast paradigm. The rapid rate of hyphal growth is driven by a structure called the Spitzenkörper, located just behind the growing tip and which is rich in secretory vesicles. It is thought that secretory vesicles are delivered to the apical region where they accumulate in the Spitzenkörper. The Spitzenkörper then acts as vesicle supply centre in which vesicles exit the Spitzenkörper in all directions, but because of its proximity, the tip receives a greater concentration of vesicles per unit area than subapical regions. There are no obvious equivalents to the bud site selection pathway to provide a spatial landmark for polarised growth in hyphae. However, an emerging model is the way that the site of polarised growth in the fission yeast, Schizosaccharomyces pombe, is marked by delivery of the kelch repeat protein, Tea1, along microtubules. The relationship of the Spitzenkörper to the polarisome and the mechanisms that promote its formation are key questions that form the focus of current research

    Radiocarbon dating and cultural dynamics across Mongolia’s early pastoral transition

    Get PDF
    All necessary permits were obtained for the described study, which complied with all relevant regulations. Collaboration contract between the Max Planck Institute for the Science of Human HIstory and the National University of Mongolia began on the 10th November, 2016. Export number 10/413 (7b/52) was received on the 2nd Feb, 2017 (#A0109258, MN DE 7 643). This research was supported by the Max Planck Institute for the Science of Human History. Special thanks to Dr. Katerina Douka and the Oxford Radiocarbon Accelerator Laboratory for conducting 14C analysis, and to all of the original excavators and authors who published the radiocarbon dates cited in this study.Peer reviewedPublisher PD

    Homologues of yeast polarity genes control the development of multinucleated hyphae in Ashbya gossypii

    No full text
    A few years ago, A. gossypii became recognized as an attractive model to study the growth of long and multinucleated fungal cells (hyphae) because of its small genome, haploid nuclei, and efficient gene targeting methods. It is generally assumed that a better understanding of filamentous fungal growth will greatly stimulate the development of novel fungicides. The use of Ashbya gossypii as a model is particularly promising because of the high level of gene order conservation (synteny) between the genomes of A. gossypii and the yeast Saccharomyces cerevisiae. Thus, a similar set of genes seems to control the surprisingly different growth modes of these two organisms, which predicts that orthologous growth control genes might not play identical cellular roles in both systems. Analyzing the phenotypes of A. gossypii mutants lacking factors with known functions in yeast morphogenesis and nuclear dynamics confirm this hypothesis. Comparative genomics of both organisms also reveals rare examples of differences in the gene sets for some cellular processes, which as shown for phosphate homeostasis can be associated with differences in control levels
    corecore