177 research outputs found

    The needs of disabled fans must not be ignored when sports stadiums reopen to spectators

    Get PDF
    Most professional sport in Europe has taken place in empty stadiums since the start of the Covid-19 pandemic. However, with the proposed return of spectators upon us, Connor Penfold, Paul Kitchin and Paul Darby argue the sports industry must facilitate a disability-inclusive restart for spectator sports. Drawing on a recent study, they outline a series of recommendations that could be used by stadium operators to ensure the pandemic does not lead to further neglect of the needs and rights of disabled people in the context of sport

    Disabled people’s experiences of English football fandom: Inclusion, exclusion and discrimination

    Get PDF
    This article employs a novel theoretical framework, rooted in the social relational model of disability alongside the concept of ableism, to critically analyse disabled football supporters lived experiences of inclusion and exclusion in English Football. In seeking to shed light on this hitherto neglected field, this study utilised a dual-phased qualitative approach comprised of two complementary netnographic methods, specifically online observations of fan message boards and online semi-structured interviews with 33 disabled football supporters of clubs in the English Football League and National League. We demonstrate that while some clubs provide inclusive spectator environments where disabled people experience moments of inclusion and belonging, they nonetheless face structural, social and psychological barriers before, during and after the matchday which create conditions that exclude, oppress and constrain full participation in football fandom. In doing so, this paper offers new insights into how the disabling nature of contemporary capitalist society continues to systematically exclude disabled people from areas of mainstream society – such as football fandom – to which they have a right

    Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition.

    Get PDF
    Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult

    CSI : A nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data

    Get PDF
    How an organism responds to the environmental challenges it faces is heavily influenced by its gene regulatory networks (GRNs). Whilst most methods for inferring GRNs from time series mRNA expression data are only able to cope with single time series (or single perturbations with biological replicates), it is becoming increasingly common for several time series to be generated under different experimental conditions. The CSI algorithm (Klemm, 2008) represents one approach to inferring GRNs from multiple time series data, which has previously been shown to perform well on a variety of datasets (Penfold and Wild, 2011). Another challenge in network inference is the identification of condition specific GRNs i.e., identifying how a GRN is rewired under different conditions or different individuals. The Hierarchical Causal Structure Identification (HCSI) algorithm (Penfold et al., 2012) is one approach that allows inference of condition specific networks (Hickman et al., 2013), that has been shown to be more accurate at reconstructing known networks than inference on the individual datasets alone. Here we describe a MATLAB implementation of CSI/HCSI that includes fast approximate solutions to CSI as well as Markov Chain Monte Carlo implementations of both CSI and HCSI, together with a user-friendly GUI, with the intention of making the analysis of networks from multiple perturbed time series datasets more accessible to the wider community.1 The GUI itself guides the user through each stage of the analysis, from loading in the data, to parameter selection and visualisation of networks, and can be launched by typing >> csi into the MATLAB command line. For each step of the analysis, links to documentation and tutorials are available within the GUI, which includes documentation on visualisation and interacting with output file

    A monomeric (trimethylsilyl)methyl lithium complex:synthesis, structure, decomposition and preliminary reactivity studies

    Get PDF
    Monomeric organolithium (LiR) complexes could provide enhanced Li–C bond reactivity and suggest mechanisms for a plethora of LiR-mediated reactions. They are highly sought-after but remain a synthetic challenge for organometallic chemists. In this work, we report the synthesis and characterisation of a monomeric (trimethylsilyl)methyl lithium complex, namely [Li(CH2SiMe3)(κ3-N,N′,N′′-Me6Tren)] (1), where Me6Tren is a tetradentate neutral amine ligand. The structure of 1 was comprehensively examined by single-crystal X-ray diffraction, variable temperature NMR spectroscopy and electron absorption spectroscopy. Complex 1 decomposes via ligand C–H and C–N activations to produce a Li amide complex 2. Preliminary reactivity studies of 1 reveal C[double bond, length as m-dash]O insertion and C–H activation reaction patterns.<br/

    Bringing numerous methods for expression and promoter analysis to a public cloud computing service

    Get PDF
    Every year, a large number of novel algorithms are introduced to the scientific community for a myriad of applications, but using these across different research groups is often troublesome, due to suboptimal implementations and specific dependency requirements. This does not have to be the case, as public cloud computing services can easily house tractable implementations within self-contained dependency environments, making the methods easily accessible to a wider public. We have taken 14 popular methods, the majority related to expression data or promoter analysis, developed these up to a good implementation standard and housed the tools in isolated Docker containers which we integrated into the CyVerse Discovery Environment, making these easily usable for a wide community as part of the CyVerse UK project

    Adhesive and conformational behaviour of mycolic acid monolayers

    Get PDF
    We have studied the pH-dependent interaction between mycolic acid (MA) monolayers and hydrophobic and hydrophilic surfaces using molecular (colloidal probe) force spectroscopy. In both cases, hydrophobic and hydrophilic monolayers (prepared by Langmuir-Blodgett and Langmuir-Schaefer deposition on silicon or hydrophobized silicon substrates, respectively) were studied. The force spectroscopy data, fitted with classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory to examine the contribution of electrostatic and van der Waals forces, revealed that electrostatic forces are the dominant contribution to the repulsive force between the approaching colloidal probe and MA monolayers. The good agreement between data and the DLVO model suggest that beyond a few nm away from the surface, hydrophobic, hydration, and specific chemical bonding are unlikely to contribute to any significant extent to the interaction energy between the probe and the surface. The pH-dependent conformation of MA molecules in the monolayer at the solid-liquid interface was studied by ellipsometry, neutron reflectometry, and with a quartz crystal microbalance. Monolayers prepared by the Langmuir-Blodgett method demonstrated a distinct pH-responsive behaviour, while monolayers prepared by the Langmuir-Schaefer method were less sensitive to pH variation. It was found that the attachment of water molecules plays a vital role in determining the conformation of the MA monolayers. (C) 2010 Elsevier B.V. All rights reserved
    • …
    corecore