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How an organism responds to the environmental challenges it faces is heavily influenced by its gene
regulatory networks (GRNs). Whilst most methods for inferring GRNs from time series mRNA
expression data are only able to cope with single time series (or single perturbations with biological
replicates), it is becoming increasingly common for several time series to be generated under different
experimental conditions. The CSI algorithm (Klemm, 2008) represents one approach to inferring
GRNs from multiple time series data, which has previously been shown to perform well on a variety
of datasets (Penfold and Wild, 2011). Another challenge in network inference is the identification
of condition specific GRNs i.e., identifying how a GRN is rewired under different conditions or
different individuals. The Hierarchical Causal Structure Identification (HCSI) algorithm (Penfold
et al., 2012) is one approach that allows inference of condition specific networks (Hickman et al.,
2013), that has been shown to be more accurate at reconstructing known networks than inference
on the individual datasets alone. Here we describe a MATLAB implementation of CSI/HCSI that
includes fast approximate solutions to CSI as well as Markov Chain Monte Carlo implementations of
both CSI and HCSI, together with a user-friendly GUI, with the intention of making the analysis of
networks from multiple perturbed time series datasets more accessible to the wider community.1 The
GUI itself guides the user through each stage of the analysis, from loading in the data, to parameter
selection and visualisation of networks, and can be launched by typing >> csi into the MATLAB
command line. For each step of the analysis, links to documentation and tutorials are available within
the GUI, which includes documentation on visualisation and interacting with output files.

Inferring networks with CSI
The CSI algorithm assumes the dynamics of gene expression for gene A evolves as: XA(t + 1) =
f (XPa(t))+ε , where XA(t) represent the expression level of gene A at time t, XPa(t) represents the
expression of the regulators at time t, ε some Gaussian noise, and f (·) represents an unknown (nonlin-
ear) function. Here we assign a prior distribution over this function in the form of a Gaussian process
(GP) prior (see Fig. 1(a)), which may be integrated out to yield the likelihood of gene expression for A
given a particular parental set of genes, Pa. The posterior distribution over parental sets (and hyper-
parameters) can be constructed via Bayes’ rule, and consists of combinatorially searching through all
sets of putative regulators (up to a maximum in-degree d), and assigning a likelihood to each set. We
may obtain a point estimate of the distribution via an Expectation Maximisation algorithm (Penfold
and Wild, 2011), or sample from it via MCMC (Penfold et al., 2012). The Gaussian process model
underpinning the dynamics of gene regulation requires a matrix inversion (which scales as O(m3)
where m is the number of experimental observations) for each possible parental set and each step
in the gradient optimisation. Within this implementation we have also included a sparse GP using
the Fully Independent Training Conditional approximation (FITC; Snelson and Ghahramani, 2006,
Quinonero-Candela et al., 2005). FITC approximates the full GP prior, effectively summarising the m
observations through n inducing points (see Fig. 1(a,b)), and scales as O(mn2) with n < m the number

1This implementation is available from http://go.warwick.ac.uk/systemsbiology/software
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of inducing points. When combined with a more efficient gradient search algorithm, this results in a
significant speedup compared to previous CSI implementations (Fig. 1(c)) with no degradation to the
accuracy of inferred networks.

Inferring Context Dependent Networks with HCSI
HCSI represents a method for identifying condition specific regulation using multiple datasets. For
example, if data is collected under different experimental conditions or in different individuals, the un-
derlying networks may be similar, but there may also be some network rewiring resulting in condition
or individual specific links. HCSI infers the upstream regulators for a gene of interest in each dataset
based upon the Gaussian process model for gene expression used by CSI. Crucially, the regulators for
each individual dataset are constrained to favour similar sets of regulators, allowing some differences
in those regulators but in a way that favours similarity. A parameter, β , is responsible for determining
how similar the sets of regulators should be in the different datasets. For β = 0, the parents in each
datasets can be considered independent of the parents in another dataset; for β >> 1 parental sets
will be increasingly similar across the datasets. This parameter can be automatically tuned within the
algorithm or fixed by the user. Currently an MCMC approach is implemented for HCSI, that updates
the parental set in each dataset in turn via a Gibbs update, followed by a Metropolis update of the GP
hyperparameters and, if not fixed, a Metropolis update of the β hyperparameter.

Because CSI/HCSI infer parental sets on a gene-by-gene basis, they represents ideal companions
to yeast one-hybrid (Y1H) or other transcription factor binding measurements such chromatin land-
scaping (Kent et al., 2011). Specifically, given a list of genes shown to bind the promotor region of
a gene of interest, CSI/HCSI can be used to identify the most likely subsets driving the expression of
that gene in a given dataset. Example Y1H and expression data taken from Hickman et al. (2013) are
included with this package (see accompanying help files for full details). Furthermore, the gene-by-
gene nature of these algorithms can be exploited when inferring networks, by identifying the parental
sets for different genes in parallel, using distributed computing capabilities. The ability to connect the
GUI to computational clusters to utilise high-performance computing has been included within this
package via the MATLAB Parallel Computing Toolbox and Distributed Computing Server.

Discussion and Future Work
The CSI package allows easy inference of the regulators of a gene from multiple perturbed gene ex-
pression data. This approach may be of use in a number of cases: (i) CSI may be used for combining
many time series data from different conditions, resulting in more accurate GRNs, but does so assum-
ing identical network structure in each of the datasets; (ii) HCSI can be used for for inferring simi-
larities and differences in GRNs from different biological conditions (where network rewiring might
occur) or in different individuals where genetic differences give rise to related but non-identical net-
works. Future work that extends the concepts of HCSI will allow the leveraging of data and networks
between different species, including cases in which multiple orthologues might exist (Penfold et al.,
2015). This should allow the vast amounts of information obtained from model organisms to be lever-
aged into novel or economically/medically relevant ones, such as crops and humans. Finally, further
development of CSI will allow the simulation of new time series data using the inferred dynamical
models.
Funding: This work was supported by EPSRC grants EP/I036575/1 & EP/J020281/1, BBSRC grant
BB/F005806/1 and Monash Undergraduate Research Projects Abroad.
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