67 research outputs found

    Monoacylglycerol lipase reprograms hepatocytes and macrophages to promote liver regeneration

    Get PDF
    Background & Aims: Liver regeneration is a repair process in which metabolic reprogramming of parenchymal and inflammatory cells plays a major role. Monoacylglycerol lipase (MAGL) is an ubiquitous enzyme at the crossroad between lipid metabolism and inflammation. It converts monoacylglycerols into free fatty acids and metabolises 2-arachidonoylglycerol into arachidonic acid, being thus the major source of pro-inflammatory prostaglandins in the liver. In this study, we investigated the role of MAGL in liver regeneration. Methods: Hepatocyte proliferation was studied in vitro in hepatoma cell lines and ex vivo in precision-cut human liver slices. Liver regeneration was investigated in mice treated with a pharmacological MAGL inhibitor, MJN110, as well as in animals globally invalidated for MAGL (MAGL-/-) and specifically invalidated in hepatocytes (MAGLHep-/-) or myeloid cells (MAGLMye-/-). Two models of liver regeneration were used: acute toxic carbon tetrachloride injection and two-thirds partial hepatectomy. MAGLMye-/- liver macrophages profiling was analysed by RNA sequencing. A rescue experiment was performed by in vivo administration of interferon receptor antibody in MAGLMye-/- mice. Results: Precision-cut human liver slices from patients with chronic liver disease and human hepatocyte cell lines exposed to MJN110 showed reduced hepatocyte proliferation. Mice with global invalidation or mice treated with MJN110 showed blunted liver regeneration. Moreover, mice with specific deletion of MAGL in either hepatocytes or myeloid cells displayed delayed liver regeneration. Mechanistically, MAGLHep-/- mice showed reduced liver eicosanoid production, in particular prostaglandin E2 that negatively impacts on hepatocyte proliferation. MAGL inhibition in macrophages resulted in the induction of the type I interferon pathway. Importantly, neutralising the type I interferon pathway restored liver regeneration of MAGLMye-/- mice. Conclusions: Our data demonstrate that MAGL promotes liver regeneration by hepatocyte and macrophage reprogramming. Impact and Implications: By using human liver samples and mouse models of global or specific cell type invalidation, we show that the monoacylglycerol pathway plays an essential role in liver regeneration. We unveil the mechanisms by which MAGL expressed in both hepatocytes and macrophages impacts the liver regeneration process, via eicosanoid production by hepatocytes and the modulation of the macrophage interferon pathway profile that restrains hepatocyte proliferation.The authors thank V. Fauveau, Institut Cochin, for help in surgery experiments; Olivier Thibaudeau of the Plateau de Morphologie Facility (INSERM UMR 1152, France) and Nicolas Sorhaindo of the Plateforme de Biochimie (CRI, INSERM UMR1149) for their help in the histology and liver function tests; and K. Bailly from the cytometry platform of Cochin Institute and H. Fohrer-Ting from the Centre de Recherche des Cordeliers, Paris University, for cell sorting analyses.Scopu

    Automated analysis of phylogenetic clusters

    Get PDF
    BACKGROUND: As sequence data sets used for the investigation of pathogen transmission patterns increase in size, automated tools and standardized methods for cluster analysis have become necessary. We have developed an automated Cluster Picker which identifies monophyletic clades meeting user-input criteria for bootstrap support and maximum genetic distance within large phylogenetic trees. A second tool, the Cluster Matcher, automates the process of linking genetic data to epidemiological or clinical data, and matches clusters between runs of the Cluster Picker. RESULTS: We explore the effect of different bootstrap and genetic distance thresholds on clusters identified in a data set of publicly available HIV sequences, and compare these results to those of a previously published tool for cluster identification. To demonstrate their utility, we then use the Cluster Picker and Cluster Matcher together to investigate how clusters in the data set changed over time. We find that clusters containing sequences from more than one UK location at the first time point (multiple origin) were significantly more likely to grow than those representing only a single location. CONCLUSIONS: The Cluster Picker and Cluster Matcher can rapidly process phylogenetic trees containing tens of thousands of sequences. Together these tools will facilitate comparisons of pathogen transmission dynamics between studies and countries

    Geographic and temporal trends in the molecular epidemiology and genetic mechanisms of transmitted HIV-1 drug resistance:an individual-patient- and sequence-level meta-analysis

    Get PDF
    Regional and subtype-specific mutational patterns of HIV-1 transmitted drug resistance (TDR) are essential for informing first-line antiretroviral (ARV) therapy guidelines and designing diagnostic assays for use in regions where standard genotypic resistance testing is not affordable. We sought to understand the molecular epidemiology of TDR and to identify the HIV-1 drug-resistance mutations responsible for TDR in different regions and virus subtypes.status: publishe
    • …
    corecore