102 research outputs found

    Towards integration of environmental and health impact assessments for wild capture fishing and farmed fish with particular reference to public health and occupational health dimensions

    Get PDF
    The paper offers a review and commentary, with particular reference to the production of fish from wild capture fisheries and aquaculture, on neglected aspects of health impact assessments which are viewed by a range of international and national health bodies and development agencies as valuable and necessary project tools. Assessments sometimes include environmental health impact assessments but rarely include specific occupational health and safety impact assessments especially integrated into a wider public health assessment. This is in contrast to the extensive application of environmental impact assessments to fishing and the comparatively large body of research now generated on the public health effects of eating fish. The value of expanding and applying the broader assessments would be considerable because in 2004 the United Nations Food and Agriculture Organization reports there were 41,408,000 people in the total ‘fishing’ sector including 11,289,000 in aquaculture. The paper explores some of the complex interactions that occur with regard to fishing activities and proposes the wider adoption of health impact assessment tools in these neglected sectors through an integrated public health impact assessment tool

    Passing the Panda Standard: A TAD Off the Mark?

    Get PDF
    Tilapia, a tropical freshwater fish native to Africa, is an increasingly important global food commodity. The World Wide Fund for Nature (WWF), a major environmental nongovernmental organization, has established stakeholder dialogues to formulate farm certification standards that promote ‘‘responsible’’ culture practices. As a preface to its ‘‘tilapia aquaculture dialogue,’’ the WWF for Nature commissioned a review of potential certification issues, later published as a peer-reviewed article. This article contends that both the review and the draft certification standards subsequently developed fail to adequately integrate critical factors governing the relative sustainability of tilapia production and thereby miss more significant issues related to resource-use efficiency and the appropriation of ecosystem space and services. This raises a distinct possibility that subsequent certification will promote intensive systems of tilapia production that are far less ecologically benign than existing widely practiced semiintensive alternatives. Given the likely future significance of this emergent standard, it is contended that a more holistic approach to certification is essential

    Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment

    No full text
    When evaluating the environmental impacts of finfish production systems, both regional impacts (e.g., eutrophication) and global impacts (e.g., climate change) should be taken into account. The life cycle assessment (LCA) method is well suited for this purpose. Three fish farms that represent contrasting intensive production systems were investigated using LCA: rainbow trout (Oncorhynchus mykiss) in freshwater raceways in France, sea-bass (Dicentrarchus labrax) in sea cages in Greece, and turbot (Scophtalmus maximus) in an inland re-circulating system close to the seashore in France. Two main characteristics differentiated the three farm systems: feed use and energy use. Emission of nitrogen and phosphorus accounted for more than 90% of each farm's potential eutrophication impact. In the trout and sea-bass systems, feed production was the major contributor to potential climate change and acidification impacts and net primary production use (NPPU). In these systems, the main source of variation for environmental impacts was the feed conversion ratio. Results from this study indicate that the sea-bass cage system was less efficient than the trout raceway system, with a higher level of potential eutrophication (65% greater) and NPPU (15% greater). The turbot re-circulating system was a high energy-consumer compared to the trout raceway system (four times higher) and the sea-bass cage system (five times higher). Potential climate change and acidification impacts were largely influenced by energy consumption in the turbot re-circulating system. In the turbot re-circulating system 86% of energy use was due to on-site consumption, while in the sea-bass cage farming system 72% of energy use was due to feed production. These results are discussed in relation to regional contexts of production and focus attention on the sensitivity of each aquatic environment and the use of energy carriers

    Assessment of environmental impact of finfish production systems using Life Cycle Assessment

    No full text
    EAS Special Publication N°35Howell, B.;Flos, RAssessment of environmental impact of finfish production systems using Life Cycle Assessment. International Conference Aquaculture Europe 2005 : Lessons from the past to optimising the Futur
    • 

    corecore