59 research outputs found

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.7Calouste Gulbenkian Foundation from LisbonSwiss Fonds Kidagan, ArmeniaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e Projetos (FINEP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of China (NSFC)Chinese Ministry of Education (CMOE)Ministry of Science and Technology of China (MSTC)Ministry of Education and Youth of the Czech RepublicDanish Natural Science Research CouncilCarlsberg FoundationDanish National Research FoundationEuropean Research Council under European CommunityHelsinki Institute of PhysicsAcademy of FinlandFrench CNRS-IN2P3Region Pays de LoireRegion AlsaceRegion AuvergneCEA, FranceGerman BMBFHelmholtz AssociationGeneral Secretariat for Research and Technology, Ministry of Development, GreeceHungarian OTKANational Office for Research and Technology (NKTH)Department of Atomic EnergyDepartment of Science and Technology of the Government of IndiaIstituto Nazionale di Fisica Nucleare (INFN) of ItalyMEXT, JapanJoint Institute for Nuclear Research, DubnaNational Research Foundation of Korea (NRF)CONACYTDGAPA, MexicoALFA-ECHELEN Program (High-Energy physics Latin-American-European Network)Stichting voor Fundamenteel Onderzoek der Materie (FOM)Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), NetherlandsResearch Council of Norway (NFR)Polish Ministry of Science and Higher EducationNational Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS)Federal Agency of Science of the Ministry of Education and Science of Russian FederationInternational Science and Technology Center, Russian Academy of SciencesRussian Federal Agency of Atomic EnergyRussian Federal Agency for Science and InnovationsCERN-INTASMinistry of Education of SlovakiaDepartment of Science and Technology, South AfricaCIEMATEELAMinisterio de Educacion y Ciencia of SpainXunta de Galicia (Conselleria de Educacion)CEADENCubaenergia, CubaIAEA (International Atomic Energy Agency)Swedish Reseach Council (VR)Knut & Alice Wallenberg Foundation (KAW)Ukraine Ministry of Education and ScienceUnited Kingdom Science and Technology Facilities Council (STFC)The United States Department of EnergyUnited States National Science FoundationState of TexasState of OhioFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Long-range angular correlations of π, K and p in p–Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    No full text
    Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon--nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3 < pTp_T < 4 GeV/c. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |ηlab\eta_{lab}| < 0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pTp_T and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2pv_2^p, is observed to be smaller than that for pions, v2πv_2^\pi, up to about pTp_T = 2 GeV/c. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2pv_2^p is found to be smaller at low pTp_T and larger at higher pTp_T than v2πv_2^\pi, with a crossing occurring at about 2 GeV. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3<pT<40.3 < p_{\rm T} < 4 GeV/cc. The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range ηlab<0.8|\eta_{\rm lab}|<0.8. Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pTp_{\rm T} and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2pv_2^p, is observed to be smaller than that for pions, v2πv_2^\pi, up to about pT=2p_{\rm T} = 2 GeV/cc. To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2pv_2^p is found to be smaller at low pTp_{\rm T} and larger at higher pTp_{\rm T} than v2piv_2^pi, with a crossing occurring at about 2 GeV. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system.Angular correlations between unidentified charged trigger particles and various species of charged associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV in the transverse-momentum range 0.3<pT<4 GeV/c . The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range |ηlab|<0.8 . Fourier coefficients are extracted from the long-range correlations projected onto the azimuthal angle difference and studied as a function of pT and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for protons, v2p , is observed to be smaller than that for pions, v2π , up to about pT=2 GeV/c . To reduce correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier decomposition of this structure shows that the second-order coefficients for pions and kaons are similar. The v2p is found to be smaller at low pT and larger at higher pT than v2π , with a crossing occurring at about 2 GeV/c . This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions. A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic model calculations assuming a collectively expanding system

    Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report on the production of inclusive Υ(1S) and Υ(2S) in p-Pb collisions at sNN−−−√=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (−4.46<ycms<−2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the Υ(1S) and Υ(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of Υ(1S). A suppression of the inclusive Υ(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects

    Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    No full text
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and Pb-Pb at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV collisions are presented. They help address a question if there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p-Pb at sNN=5.02 TeV and Pb-Pb at sNN=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a |Δη| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}≃v2{6}≠0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δη|&gt;1.4 gap is placed.Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed

    Neutral pion production at midrapidity in pp and Pb-Pb collisions at sNN=2.76TeV\sqrt{s_{{\mathrm {NN}}}}= 2.76\,{\mathrm {TeV}}

    No full text
    Invariant yields of neutral pions at midrapidity in the transverse momentum range 0.6<pT<120.6 < p_{T} < 12 GeV/c measured in Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV are presented for six centrality classes. The pp reference spectrum was measured in the range 0.4<pT<100.4 < p_{T} < 10 GeV/c at the same center-of-mass energy. The nuclear modification factor, RAAR_{AA}, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about 8108-10 for 5pT75 \lesssim p_{T} \lesssim 7 GeV/c. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.Invariant yields of neutral pions at midrapidity in the transverse momentum range 0.6 < p_\mathrm{T}< 12\,{\mathrm \mathrm{GeV}}/ c measured in Pb–Pb collisions at sNN=2.76TeV\sqrt{s_{\mathrm {NN}}}= 2.76\,{\mathrm {\,}}\mathrm{TeV} are presented for six centrality classes. The pp reference spectrum was measured in the range 0.4<pT<10GeV/0.4 < p_\mathrm{T}< 10\,{\mathrm {\,}}\mathrm{GeV}/ c at the same center-of-mass energy. The nuclear modification factor, RAAR_\mathrm{{AA}} , shows a suppression of neutral pions in central Pb–Pb collisions by a factor of up to about 8108{-}10 for 5 \lesssim p_\mathrm{T}\lesssim 7\,{\mathrm \mathrm{GeV}}/ c. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.Invariant yields of neutral pions at midrapidity in the transverse momentum range 0.6<pT<12GeV/c0.6 < p_{T} < 12 GeV/c measured in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV are presented for six centrality classes. The pp reference spectrum was measured in the range 0.4<pT<10GeV/c0.4 < p_{T} < 10 GeV/c at the same center-of-mass energy. The nuclear modification factor, RAAR_{\rm AA}, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about 8108-10 for 5pT7GeV/c5 \lesssim p_{T} \lesssim 7 GeV/c. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations

    Event-by-event mean pT{p}_{\mathbf {T}} fluctuations in pp and Pb-Pb collisions at the LHC

    No full text
    Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at √s = 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at √sNN = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Non-statistical fluctuations are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb–Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb–Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb–Pb are in qualitative agreement with previous measurements in Au–Au at lower collision energies and with expectations from models that incorporate collective phenomena.Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at s\sqrt{s} = 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at sNN\sqrt{s_\mathrm{NN}}   = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb–Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb–Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb–Pb are in qualitative agreement with previous measurements in Au–Au at lower collision energies and with expectations from models that incorporate collective phenomena.Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at s\sqrt{s} = 0.9, 2.76 and 7 TeV, and Pb-Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb-Pb data exhibit a similar multiplicity dependence as that observed in pp. In central Pb-Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb--Pb are in qualitative agreement with previous measurements in Au-Au at lower collision energies and with expectations from models that incorporate collective phenomena
    corecore