81 research outputs found

    Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.

    Get PDF
    We have characterized the S1 satellite from eight European populations of Rana dalmatina by Southern blot, cloning and a new method that determines the sequence variability of repetitive units in the genome. This report completes our previous studies on this satellite DNA family, thus providing the first characterization of the overall variability of the structure and genomic organization of a satellite DNA within a species and among related species. The S1 satellite from R. dalmatina has a pericentromeric location on ten chromosome pairs and presents two homologous repeats S1a (494 bp) and S1b (332 bp), mostly organized as composite S1a-S1b repetitive units. In other brown frog species, both repeats have different sequences and locations, and are usually organized as separate arrays, although composite S1a-S1b repeats represent a minor, widely variable component in Rana italica. The average genomic sequences indicate that the species contains an enormous number of variants of each repeat derived from a unique, species-specific common sequence. The repeat variability is restricted to specific base changes in specific sequence positions in all population samples. Our data show that the structure and evolution of S1 satellite family is not due to crossing-over and gene conversion, but to a mechanism that maintains the ability of the satellite DNA to assemble in constitutive heterochromatin by replacing altered satellite segments with new arrays generated by rolling circle amplification. The mode of action of this repair process not only directly explains the intra- and inter-specific variability of the structure and organization of the S1 satellite repeats from European brown frogs, but also accounts for all general features of satellite DNA in eukaryotes, including its discontinuous evolution. This repair mechanism can maintain the satellite structure in a species indefinitely, but also promote a rapid generation of new variants or types of satellite DNA when environmental conditions favor the formation of new species

    The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA.

    Get PDF
    We investigated the overall variability of the S1a satellite DNA repeats in ten European populations of Rana temporaria by a new procedure that determines the average sequence of the repeats in a genome. The average genomic sequences show that only 17% of the S1a repeat sequence (494 bp) is variable. The variable positions contain the same major and minor bases in all or many of the population samples tested, but the percentages of these bases can greatly vary among populations. This indicates the presence in the species of an enormous number of repeats having a different distribution of bases in these variable positions. Individual genomes contain thousands of repeat variants, but these mixtures have very similar characteristics in all populations because they present the same type of restricted and species-specific variability. Southern blots analyses and sequences of cloned S1a repeats fully support this conclusion. The S1 satellite DNA of other European brown frog species also presents properties indicating the same type of variability. This first characterisation of the overall repeat variability of a satellite DNA in a species has revealed features that cannot be determined by gene conversion and crossing over. Our results suggest that a specific directional process based on rolling circle amplification should play a relevant role in the evolution of satellite DNA

    Chromosome analysis on Central and Southern Italy population of the common toad, Bufo bufo (Amphibia, Anura)

    Get PDF
    Amphibians constitute a very good model to explore the historical aspects of species distributions due to their low dispersal capacity and low individual vagility. Bufonidae are one of the most speciose family of Anura, including taxa, such as Bufo bufo, widespread in Eurasian regions. We performed a karyological study with standard and sequential C-banding + fluorochromes (Chromomycin A3 (CMA) and Diamidinophenylindole (DAPI) on several tadpoles from different populations of Central and Southern Italy. All the examined tadpoles exhibited the standard Bufokaryotype of 2n = 22 biarmed chromosomes, with the first six pairs larger than the other five (7 - 11) pairs and NOR associated heterochromatin distal on the long arms of the 6thchromosome pair, that was also the only chromosome CMA-positive region. C-banding evidenced centromeric heterochromatin, DAPI positive, on all the chromosomes in all the studied populations from Central Italy. The Southern Italy populations differed in additional paracentromeric C-bands on the short arms of chromosomes 1, 3 and 5. These results support the partition of Central populations of B. bufo from the Southern ones, as evidenced also from molecular phylogenetic studie

    Characterization of Two Transposable Elements and an Ultra-Conserved Element Isolated in the Genome of Zootoca vivipara (Squamata, Lacertidae)

    Get PDF
    : Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level

    Helix straminea Briganti, 1825 in Italy (Gastropoda: Pulmonata): taxonomic history, morphology, biology, distribution and phylogeny

    Get PDF
    The land snail taxon Helix straminea Briganti, 1825 has been reintroduced as a valid species in 2014. We provide here a comprehensive account of its taxonomy, distribution, anatomy, phylogeny and karyology in Italy. An overview of the historical views on the validity of the species is presented and faunistic data are reviewed and implemented with new records from Campania and Basilicata. A lectotype is fixed for H. straminea from the syntypes stored in the Muséum d'Histoire Naturelle of GenÚve, as well as for three other taxa (Helix straminiformis Bourguignat, 1876, Helix yleobia Bourguignat, 1883 and Helix straminea ssp. elongata Bourguignat, 1860). Genital system, radula and karyotype are described for the first time. Molecular analysis of two mitochondrial genes combining GenBank data and the new sequences presented in this paper showed no differentiation between the northern and southern Italian populations. The conservation status of the species and its possible threats are discussed

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    • 

    corecore