82 research outputs found

    When phenology matters: age–size truncation alters population response to trophic mismatch

    Get PDF
    Climate-induced shifts in the timing of life-history events are a worldwide phenomenon, and these shifts can de-synchronize species interactions such as predator–prey relationships. In order to understand the ecological implications of altered seasonality, we need to consider how shifts in phenology interact with other agents of environmental change such as exploitation and disease spread, which commonly act to erode the demographic structure of wild populations. Using long-term observational data on the phenology and dynamics of a model predator–prey system (fish and zooplankton in Windermere, UK), we show that age–size truncation of the predator population alters the consequences of phenological mismatch for offspring survival and population abundance. Specifically, age–size truncation reduces intraspecific density regulation due to competition and cannibalism, and thereby amplifies the population sensitivity to climate-induced predator–prey asynchrony, which increases variability in predator abundance. High population variability poses major ecological and economic challenges as it can diminish sustainable harvest rates and increase the risk of population collapse. Our results stress the importance of maintaining within-population age–size diversity in order to buffer populations against phenological asynchrony, and highlight the need to consider interactive effects of environmental impacts if we are to understand and project complex ecological outcomes

    Ecological speciation in European whitefish is driven by a large-gaped predator

    Get PDF
    Lake-dwelling fish that form species pairs/flocks characterized by body size divergence are important model systems for speciation research. Although several sources of divergent selection have been identified in these systems, their importance for driving the speciation process remains elusive. A major problem is that in retrospect, we cannot distinguish selection pressures that initiated divergence from those acting later in the process. To address this issue, we studied the initial stages of speciation in European whitefish (Coregonus lavaretus) using data from 358 populations of varying age (26-10,000 years). We find that whitefish speciation is driven by a large-growing predator, the northern pike (Esox lucius). Pike initiates divergence by causing a largely plastic differentiation into benthic giants and pelagic dwarfs: ecotypes that will subsequently develop partial reproductive isolation and heritable differences in gill raker number. Using an eco-evolutionary model, we demonstrate how pike's habitat specificity and large gape size are critical for imposing a between-habitat trade-off, causing prey to mature in a safer place or at a safer size. Thereby, we propose a novel mechanism for how predators may cause dwarf/giant speciation in lake-dwelling fish species.Peer reviewe

    Pathogens trigger top-down climate forcing on ecosystem dynamics

    Get PDF
    Evaluating the effects of climate variation on ecosystems is of paramount importance for our ability to forecast and mitigate the consequences of global change. However, the ways in which complex food webs respond to climate variations remain poorly understood. Here, we use long-term time series to investigate the effects of temperature variation on the intraguild-predation (IGP) system of Windermere (UK), a lake where pike (Esox lucius, top predator) feed on small-sized perch (Perca fluviatilis) but compete with large-sized perch for the same food sources. Spectral analyses of time series reveal that pike recruitment dynamics are temperature controlled. In 1976, expansion of a size-truncating perch pathogen into the lake severely impacted large perch and favoured pike as the IGP-dominant species. This pathogen-induced regime shift to a pike-dominated IGP apparently triggered a temperature-controlled trophic cascade passing through pike down to dissolved nutrients. In simple food chains, warming is predicted to strengthen top–down control by accelerating metabolic rates in ectothermic consumers, while pathogens of top consumers are predicted to dampen this top–down control. In contrast, the local IGP structure in Windermere made warming and pathogens synergistic in their top–down effects on ecosystem functioning. More generally, our results point to top predators as major mediators of community response to global change, and show that size-selective agents (e.g. pathogens, fishers or hunters) may change the topological architecture of food webs and alter whole ecosystem sensitivity to climate variation

    Optimal Swimming Speed in Head Currents and Effects on Distance Movement of Winter-Migrating Fish

    Get PDF
    Migration is a commonly described phenomenon in nature that is often caused by spatial and temporal differences in habitat quality. However, as migration requires energy, the timing of migration may depend not only on differences in habitat quality, but also on temporal variation in migration costs. Such variation can, for instance, arise from changes in wind or current velocity for migrating birds and fish, respectively. Whereas behavioural responses of birds to such changing environmental conditions have been relatively well described, this is not the case for fish, although fish migrations are both ecologically and economically important. We here use passive and active telemetry to study how winter migrating roach regulate swimming speed and distance travelled per day in response to variations in head current velocity. Furthermore, we provide theoretical predictions on optimal swimming speeds in head currents and relate these to our empirical results. We show that fish migrate farther on days with low current velocity, but travel at a greater ground speed on days with high current velocity. The latter result agrees with our predictions on optimal swimming speed in head currents, but disagrees with previously reported predictions suggesting that fish ground speed should not change with head current velocity. We suggest that this difference is due to different assumptions on fish swimming energetics. We conclude that fish are able to adjust both swimming speed and timing of swimming activity during migration to changes in head current velocity in order to minimize energy use

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Density‐ and size‐dependent mortality in fish early life stages

    Get PDF
    The importance of survival and growth variations early in life for population dynamics depends on the degrees of compensatory density dependence and size dependence in survival at later life stages. Quantifying density‐ and size‐dependent mortality at different juvenile stages is therefore important to understand and potentially predict the recruitment to the population. We applied a statistical state‐space modelling approach to analyse time series of abundance and mean body size of larval and juvenile fish. The focus was to identify the importance of abundance and body size for growth and survival through successive larval and juvenile age intervals, and to quantify how the dynamics propagate through the early life to influence recruitment. We thus identified both relevant ages and mechanisms (i.e. density dependence and size dependence in survival and growth) linking recruitment variability to early life dynamics. The analysis was conducted on six economically and ecologically important fish populations from cold temperate and sub‐arctic marine ecosystems. Our results underscore the importance of size for survival early in life. The comparative analysis suggests that size‐dependent mortality and density‐dependent growth frequently occur at a transition from pelagic to demersal habitats, which may be linked to competition for suitable habitat. The generality of this hypothesis warrants testing in future research.publishedVersio

    Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux

    Full text link
    A fully adaptive finite volume multiresolution scheme for one-dimensional strongly degenerate parabolic equations with discontinuous flux is presented. The numerical scheme is based on a finite volume discretization using the Engquist--Osher approximation for the flux and explicit time--stepping. An adaptivemultiresolution scheme with cell averages is then used to speed up CPU time and meet memory requirements. A particular feature of our scheme is the storage of the multiresolution representation of the solution in a dynamic graded tree, for the sake of data compression and to facilitate navigation. Applications to traffic flow with driver reaction and a clarifier--thickener model illustrate the efficiency of this method
    • 

    corecore