417 research outputs found

    The Corrosion Behavior of Electroless Ni-P-SiC and Ni-Sn-P-SiC Nano-Composite Coating

    Get PDF
    Abstract: Electroless nickel (EN) and EN composite with SiC and Sn-SiC were deposited by chemical deposition. The microstructure analysis was conducted with scanning electron microscopy, Thin film indicated that the presence of SiC particles did not affect the microstructure of the Ni-P alloy matrix when annealing temperature was below 400°C. EDAX (Energy dispersive x-ray analysis) technique have been applied in order to investigate the chemical composition and indicated that linear relation between SiC concentrations and SiC content. Microhardness of electroless Ni-Sn-P deposite, Ni-P-SiC composite and Ni-Sn-P-SiC composite were studied. Microhardness reached to the maximum value after heating to 400ºC for 1h. Microhardness follow the sequence Ni-P-SiC > Ni-Sn-P-SiC > Ni-P > Ni-Sn-P. Finally, the corrosion resistance of different SiC content and constant concentration of SnCl2 was studied in different corrosive solutions (1M H2SO4 and 3.5% NaCl solution)

    Origins left, right and centre: increasing the number of initiation sites in the Escherichia coli chromosome

    Get PDF
    © 2018 by the authors. The bacterium Escherichia coli contains a single circular chromosome with a defined architecture. DNA replication initiates at a single origin called oriC. Two replication forks are assembled and proceed in opposite directions until they fuse in a specialised zone opposite the origin. This termination area is flanked by polar replication fork pause sites that allow forks to enter, but not to leave. Thus, the chromosome is divided into two replichores, each replicated by a single replication fork. Recently, we analysed the replication parameters in E. coli cells, in which an ectopic origin termed oriZ was integrated in the right-hand replichore. Two major obstacles to replication were identified: (1) head-on replication–transcription conflicts at highly transcribed rrn operons, and (2) the replication fork trap. Here, we describe replication parameters in cells with ectopic origins, termed oriX and oriY, integrated into the left-hand replichore, and a triple origin construct with oriX integrated in the left-hand and oriZ in the right-hand replichore. Our data again highlight both replication–transcription conflicts and the replication fork trap as important obstacles to DNA replication, and we describe a number of spontaneous large genomic rearrangements which successfully alleviate some of the problems arising from having an additional origin in an ectopic location. However, our data reveal additional factors that impact efficient chromosome duplication, highlighting the complexity of chromosomal architecture

    Splitting Arabic Texts into Elementary Discourse Units

    Get PDF
    International audienceIn this article, we propose the first work that investigates the feasibility of Arabic discourse segmentation into elementary discourse units within the segmented discourse representation theory framework. We first describe our annotation scheme that defines a set of principles to guide the segmentation process. Two corpora have been annotated according to this scheme: elementary school textbooks and newspaper documents extracted from the syntactically annotated Arabic Treebank. Then, we propose a multiclass supervised learning approach that predicts nested units. Our approach uses a combination of punctuation, morphological, lexical, and shallow syntactic features. We investigate how each feature contributes to the learning process. We show that an extensive morphological analysis is crucial to achieve good results in both corpora. In addition, we show that adding chunks does not boost the performance of our system

    Grain refinement of Al-Mg-Sc alloy by ultrasonic treatment

    Get PDF
    In foundry practice, ultrasonic treatment has been used as an efficient technique to achieve grain refinement in aluminium and magnesium alloys. This article shows the strong effect of pouring temperature and ultrasonic treatment at various temperatures on the grain refinement of Al-1 wt% Mg-0.3 wt% Sc alloy. Without ultrasonic treatment, a fine grain structure was obtained at the pouring temperature of 700 °C. The average grain size sharply decreases from 487 ± 20 to 103 ± 2 μm when the pouring temperature decreases from 800 to 700 °C. Ultrasonic vibration proved to be a potential grain refinement technique with a wide range of pouring tem- perature. A microstructure with very fine and homogeneous grains was obtained by applying ultrasonic treatment to the melt at the temperature range between 700 and 740 °C, before pouring. Cavitation-enhanced hetero- geneous nucleation is the mechanism proposed to explain grain refinement by ultrasound in this alloy. Moreover, ultrasonic treatment of the melt was found to lead to cast samples with hardness values similar to those obtained in samples submitted to precipitation hardening, suggesting that ultrasonic treatment can avoid carrying out heat treatment of cast parts.This research was supported by The Project Bridging The Gap, funded by the Erasmus Mundus External Cooperation Window Programme. Acknowledgements also to the University of Minho, for the provision of research facilities

    Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes

    Get PDF
    BACKGROUND: Toxoplasmosis is an infectious disease caused by the parasitic protozoan Toxoplasma gondii. It is endemic worldwide and, depending on the geographic location, 15 to 85% of the human population are asymptomatically infected. Routine diagnosis is based on serology. The parasite has emerged as a major opportunistic pathogen for immunocompromised patients, in whom it can cause life-threatening disease. Moreover, when a pregnant woman develops a primary Toxoplasma gondii infection, the parasite may be transmitted to the fetus and cause serious damnage. For these two subpopulations, a rapid and accurate diagnosis is required to initiate treatment. Serological diagnosis of active infection is unreliable because reactivation is not always accompanied by changes in antibody levels, and the presence of IgM does not necessarily indicate recent infection. Application of quantitative PCR has evolved as a sensitive, specific, and rapid method for the detection of Toxoplasma gondii DNA in amniotic fluid, blood, tissue samples, and cerebrospinal fluid. METHODS: Two separate, real-time fluorescence PCR assays were designed and evaluated with clinical samples. The first, targeting the 35-fold repeated B1 gene, and a second, targeting a newly described multicopy genomic fragment of Toxoplasma gondii. Amplicons of different intragenic copies were analyzed for sequence heterogeneity. RESULTS: Comparative LightCycler experiments were conducted with a dilution series of Toxoplasma gondii genomic DNA, 5 reference strains, and 51 Toxoplasma gondii-positive amniotic fluid samples revealing a 10 to 100-fold higher sensitivity for the PCR assay targeting the newly described 529-bp repeat element of Toxoplasma gondii. CONCLUSION: We have developed a quantitative LightCycler PCR protocol which offer rapid cycling with real-time, sequence-specific detection of amplicons. Results of quantitative PCR demonstrate that the 529-bp repeat element is repeated more than 300-fold in the genome of Toxoplasma gondii. Since individual intragenic copies of the target are conserved on sequence level, the high copy number leads to an ultimate level of analytical sensitivity in routine practice. This newly described 529-bp repeat element should be preferred to less repeated or more divergent target sequences in order to improve the sensitivity of PCR tests for the diagnosis of toxoplasmosis

    HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival

    Get PDF
    Data availability: The databases generated during an/or analysed during the current study are available from the corresponding author on reasonable request.Copyright © The Author(s) 2022. Lentiviral vectors (LV) are attractive for permanent and effective gene therapy. However, integration into the host genome can cause insertional mutagenesis highlighting the importance of understanding of LV integration. Insertion site (IS) tethering is believed to involve cellular proteins such as PSIP1/LEDGF/p75, which binds to the virus pre-integration complexes (PICs) helping to target the virus genome. Transcription factors (TF) that bind both the vector LTR and host genome are also suspected influential to this. To determine the role of TF in the tethering process, we mapped predicted transcription factor binding sites (pTFBS) near to IS chosen by HIV-1 LV using a narrow 20 bp window in infected human induced pluripotent stem cells (iPSCs) and their hepatocyte-like cell (HLC) derivatives. We then aligned the pTFBS with these sequences found in the LTRs of native and self-inactivated LTRs. We found significant enrichment of these sequences for pTFBS essential to HIV-1 life cycle and virus survival. These same sites also appear in HIV-1 patient IS and in mice infected with HIV-1 based LV. This in silco data analysis suggests pTFBS present in the virus LTR and IS sites selected by HIV-1 LV are important to virus survival and propagation.NC3Rs CRACK IT Challenge 21: InMutagene award, sponsored by GSK and Novartis

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa

    Get PDF
    [Figure: see text]

    Factive Scientific Understanding Without Accurate Representation

    Get PDF
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the (difference-making) features of their real-world target system(s). My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves

    Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    Africa’s response to the COVID-19 pandemic : A review of the nature of the virus, impacts and implications for preparedness

    Get PDF
    Background: COVID-19 continues to wreak havoc in different countries across the world, claiming thousands of lives, increasing morbidity and disrupting lifestyles. The global scientific community is in urgent need of relevant evidence, to understand the challenges and knowledge gaps, as well as the opportunities to contain the spread of the virus. Considering the unique socio-economic, demographic, political, ecological and climatic contexts in Africa, the responses which may prove to be successful in other regions may not be appropriate on the continent. This paper aims to provide insight for scientists, policy makers and international agencies to contain the virus and to mitigate its impact at all levels. Methods: The Affiliates of the African Academy of Sciences (AAS), came together to synthesize the current evidence, identify the challenges and opportunities to enhance the understanding of the disease. We assess the potential impact of this pandemic and the unique challenges of the disease on African nations. We examine the state of Africa’s preparedness and make recommendations for steps needed to win the war against this pandemic and combat potential resurgence. Results: We identified gaps and opportunities among cross-cutting issueswhich must be addressed or harnessed in this pandemic. Factors such as the nature of the virus and the opportunities for drug targeting, point of care diagnostics, health surveillance systems, food security, mental health, xenophobia and gender-based violence, shelter for the homeless, water and sanitation, telecommunications challenges, domestic regional coordination and financing. Conclusion: Based on our synthesis of the current evidence, while there are plans for preparedness in several African countries, there are significant limitations. A multi-sectoral efforts from the science, education, medical, technology, communication, business, and industry sectors, as well as local communities, must work collaboratively to assist countries in order to win this fight
    • …
    corecore