101 research outputs found

    From plant to product – basic principles, applications and future prospects

    Get PDF
    No Abstract

    Verhuellia is a segregate lineage in Piperaceae: more evidence from flower, fruit and pollen morphology, anatomy and development

    Get PDF
    Background and Aims The perianthless Piperales, i.e. Saururaceae and Piperaceae, have simple reduced flowers strikingly different from the other families of the order (e.g. Aristolochiaceae). Recent molecular phylogenies proved Verhuellia to be the first branch in Piperaceae, making it a promising object to study the detailed structure and development of the flowers. Based on recently collected material, the first detailed study since 1872 was conducted with respect to morphology, anatomy and development of the inflorescence, pollen ultrastructure and fruit anatomy. Methods Original Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Light Microscopy (LM) observations on Verhuellia lunaria were compared with Piperaceae, Saururaceae and fossils. Key results The inflorescence is an indeterminate spike with sessile flowers, each in the axil of a bract, developing in acropetal, helical succession. Flowers consist of two (occasionally three) stamens with basifixed tetrasporangiate anthers and latrorse dehiscence by a longitudinal slit. The gynoecium lacks a style but has three to four stigma branches and a single, basal orthotropous, and unitegmic ovule. The fruit is a drupe with large multicellular epidermal protuberances. The pollen is very small, inaperturate, and areolate with hemispherical microechinate exine elements. Conclusions Despite the superficial similarities with different genera of Piperaceae and Saururaceae, the segregate position of Verhuellia revealed by molecular phylogenetics is supported by morphological, developmental and anatomical data presented here. Unitegmic ovules and inaperturate pollen, which are synapomorphies for the genus Peperomia, are also present in Verhuellia

    Competition between diffusion and advection may mediate self-repair of wax microstructures on plant surfaces

    Get PDF
    Cuticles are extracellular membranes covering the primary aerial parts of vascular plants. They consist of a multifunctional polymeric material with embedded soluble components, called waxes and serve as the interface between plants and their atmospheric environment, first of all protecting them from desiccation. Waxes are produced within the epidermal cells, then transported to the leaf surface and finally integrated into the polymer or deposited upon the cuticle. Remarkably, damaged wax layers may become repaired within a few hours. Base on an earlier hypothesis we present a theoretical framework explaining how waxes are transported through the plant epidermis by a combination of advection and diffusion. This combination suggests also a self-regulating repair mechanism, based on the assumption that intact cuticles induce an antagonistic equilibrium between advection and diffusion: whenever a wax layer is damaged, the equilibrium is disturbed in favour of advection, starting a repair process, which is intrinsically coming to an end after the cuticle has gained its original thickness

    The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology

    Get PDF
    Spilomelinae and Pyraustinae form a species-rich monophylum of Crambidae (snout moths). Morphological distinction of the two groups has been difficult in the past, and the morphologically heterogenous Spilomelinae has not been broadly accepted as a natural group due to the lack of convincing apomorphies. In order to investigate potential apomorphic characters for Spilomelinae and Pyraustinae and to examine alternative phylogenetic hypotheses, we conduct a phylogenetic analysis using 6 molecular markers and 114 morphological characters of the adults representing 77 genera of Spilomelinae and 18 genera of Pyraustinae. The results of the analysis of the combined data strongly suggest that Spilomelinae and Pyraustinae are each monophyletic and sister to each other. Wurthiinae is confirmed as ingroup of Spilomelinae, and Sufetula Walker, 1859 as a non-spilomeline. Within Spilomelinae, several well supported clades are obtained, for which we propose a first phylogeny-based tribal classification, using nine available and four new names: Hydririni Minet, 1982 stat.rev., Lineodini Amsel, 1956 stat.rev., Udeini trib.n., Wurthiini Roepke, 1916 stat.rev., Agroterini Acloque, 1897 stat.rev., Spilomelini Guenée, 1854 stat.rev. (= Siginae Hampson, 1918), Herpetogrammatini trib.n., Hymeniini Swinhoe, 1900 stat.rev., Asciodini trib.n., Trichaeini trib.n., Steniini Guenée, 1854 stat.rev., Nomophilini Kuznetzov & Stekolnikov, 1979 stat.rev. and Margaroniini Swinhoe & Cotes, 1889 stat.rev. (= Dichocrociinae Swinhoe, 1900; = Hapaliadae Swinhoe, 1890; = Margarodidae Guenée, 1854). The available name Syleptinae Swinhoe, 1900 could not be assigned to any of the recovered clades. Three tribes are recognized in Pyraustinae: Euclastini Popescu-Gorj & Constantinescu, 1977 stat.rev., Portentomorphini Amsel, 1956 stat.rev. and Pyraustini Meyrick, 1890 stat.rev. (= Botydes Blanchard, 1840; = Ennychites Duponchel, 1845). The taxonomic status of Tetridia Warren, 1890, found to be sister to all other investigated Pyraustinae, needs further investigation. The four Spilomelinae tribes that are sister to all other, ‘euspilomeline’ tribes share several plesiomorphies with Pyraustinae. We provide morphological synapomorphies and descriptions for Spilomelinae, Pyraustinae and the subgroups recognised therein. These characters allow the assignment of additional 125 genera to Spilomelinae tribes, and additional 56 genera to Pyraustinae tribes. New and revised combinations are proposed: Nonazochis Amsel, 1956 syn.n. of Conchylodes Guenée, 1854, with Conchylodes graphialis (Schaus, 1912) comb.n.; Conchylodes octonalis (Zeller, 1873) comb.n. (from Lygropia); Hyperectis Meyrick, 1904 syn.n. of Hydriris Meyrick, 1885, with Hydriris dioctias (Meyick, 1904) comb.n., and Hydriris apicalis (Hampson, 1912) comb.n.; Conogethes pandamalis (Walker, 1859) comb.n. (from Dichocrocis); Arthromastix pactolalis (Guenée, 1854) comb.n. (from Syllepte); Prophantis coenostolalis (Hampson, 1899) comb.n. (from Thliptoceras); Prophantis xanthomeralis (Hampson, 1918) comb.n. (from Thliptoceras); Prophantis longicornalis (Mabille, 1900) comb.n. (from Syngamia); Charitoprepes apicipicta (Inoue, 1963) comb.n. (from Heterocnephes); Prenesta rubrocinctalis (Guenée, 1854) comb.n. (from Glyphodes); Alytana calligrammalis (Mabille, 1879) comb.n. (from Analyta). Epherema Snellen, 1892 stat.rev. with its type species E. abyssalis Snellen, 1892 comb.rev. is removed from synonymy with Syllepte Hübner, 1823. Ametrea Munroe, 1964 and Charitoprepes Warren, 1896 are transferred from Pyraustinae to Spilomelinae; Prooedema Hampson, 1891 from Spilomelinae to Pyraustinae; Aporocosmus Butler, 1886 from Spilomelinae to Odontiinae; Orthoraphis Hampson, 1896 from Spilomelinae to Lathrotelinae; Hydropionea Hampson, 1917, Plantegumia Amsel, 1956 and Munroe’s (1995) “undescribed genus ex Boeotarcha Meyrick” are transferred from Spilomelinae to Glaphyriinae.publishedVersio

    Chasing the hare - Evaluating the phylogenetic utility of a nuclear single copy gene region at and below species level within the species rich group Peperomia (Piperaceae)

    Get PDF
    Background: The rapidly increasing number of available plant genomes opens up almost unlimited prospects for biology in general and molecular phylogenetics in particular. A recent study took advantage of this data and identified a set of nuclear genes that occur in single copy in multiple sequenced angiosperms. The present study is the first to apply genomic sequence of one of these low copy genes, agt1, as a phylogenetic marker for species-level phylogenetics. Its utility is compared to the performance of several coding and non-coding chloroplast loci that have been suggested as most applicable for this taxonomic level. As a model group, we chose Tildenia, a subgenus of Peperomia (Piperaceae), one of the largest plant genera. Relationships are particularly difficult to resolve within these species rich groups due to low levels of polymorphisms and fast or recent radiation. Therefore, Tildenia is a perfect test case for applying new phylogenetic tools. Results: We show that the nuclear marker agt1, and in particular the agt1 introns, provide a significantly increased phylogenetic signal compared to chloroplast markers commonly used for low level phylogenetics. 25% of aligned characters from agt1 intron sequence are parsimony informative. In comparison, the introns and spacer of several common chloroplast markers (trnK intron, trnK-psbA spacer, ndhF-rpl32 spacer, rpl32-trnL spacer, psbA-trnH spacer) provide less than 10% parsimony informative characters. The agt1 dataset provides a deeper resolution than the chloroplast markers in Tildenia. Conclusions: Single (or very low) copy nuclear genes are of immense value in plant phylogenetics. Compared to other nuclear genes that are members of gene families of all sizes, lab effort, such as cloning, can be kept to a minimum. They also provide regions with different phylogenetic content deriving from coding and non-coding parts of different length. Thus, they can be applied to a wide range of taxonomic levels from family down to population level. As more plant genomes are sequenced, we will obtain increasingly precise information about which genes return to single copy most rapidly following gene duplication and may be most useful across a wide range of plant groups

    Beneficial or hazardous? A comprehensive study of 24 elements from wild edible plants from Angola

    Get PDF
    Angola suffers from a high child mortality rate and a prevalence of anemia due to malnutrition. The aim of this study is to provide a comprehensive overview of the mineral content of 43 wild edible plants. A total of 24 different elements (aluminum, antimony, arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, lithium, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium, strontium, titanium, thallium, vanadium, zinc) were analyzed by inductively coupled plasma atomic emission spectroscopy to identify nutritional beneficial and hazardous plants. For the majority of studied species (31 of 43) data lack completely. For the remaining, only macronutrient contents are published yet, determining their (ultra)trace element and heavy metal contents for the first time. None of the examined plants pose a risk to human health due to low heavy metal contents, seasonality, and low amounts of consumed plant parts. Iron and zinc rich plant parts, such as fruits of Canarium schweinfurthii, or leaves of Crassocephalum rubens, Solanum americanum, and Piper umbellatum could help combating deficiency syndromes. The genus Landolphia shows to be an aluminum hyperaccumulator with aluminum contents >1000 mg/kg. Results of this study serve as a database for upcoming research. The nutritional value of edible plants is evaluated

    Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae)

    Get PDF
    The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself

    Evolution of Class IITCPgenes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia

    Full text link
    [EN] Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots. The evolution of class II TCP genes reveals single-copy CYCLOIDEA-like genes and three paralogs of CINCINNATA (CIN) in early diverging angiosperms. All class II TCP genes have independently duplicated in Aristolochia subgenus Siphisia. Also CIN2 genes duplicated before the diversification of Saruma and Asarum. Sequence analysis shows that CIN1 and CIN3 share motifs with Cyclin proteins and CIN2 genes have lost the miRNA319a binding site. Expression analyses of all paralogs of class II TCP genes in Aristolochia fimbriata point to a role of CYC and CIN genes in maintaining differential perianth expansion during mid- and late flower developmental stages by promoting cell division in the distal and ventral portion of the limb. It is likely that class II TCP genes also contribute to cell division in the leaf, the gynoecium and the ovules in A. fimbriata.We thank Anny Garces Palacio, Sarita Munoz, Pablo Perez-Mesa (Universidad de Antioquia, Colombia), Cecilia Zumajo-Cardona (The New York Botanical Garden), Ana Berbel and Clara Ines Ortiz-Ramirez (Instituto de Biologia Molecular y Celular de Plantas, CSIC-UVP, Valencia, Spain) for photographs and assistance during laboratory work. We also thank Sebastian Gonzalez (Massachusetts College of Art and Design) for taking some of the photographs in Figs 1 and 2. Thanks are also due to the Dresden Junior Fellowship for allowing the visiting professor fellowship of NPM to the Technishe Universitat Dresden during 2019. This research was funded by Estrategia de Sostenibilidad 2018-2019 the Convocatoria Programaticas 2017-2018 (code 2017-16302), and the 2018-2019 Fondo de Internacionalizacion (code 201926230) from the Universidad de Antioquia, the iCOOP + 2016 grant COOPB20250 from Centro Superior de Investigacion Cientifica, CSIC and the ExpoSEED (H2020.MSCA-RISE2015-691109) EU grant.Pabon-Mora, N.; Madrigal, Y.; Alzate, JF.; Ambrose, BA.; Ferrandiz Maestre, C.; Wanke, S.; Neinhuis, C.... (2020). Evolution of Class IITCPgenes in perianth bearing Piperales and their contribution to the bilateral calyx in Aristolochia. New Phytologist. 228(2):752-769. https://doi.org/10.1111/nph.16719S7527692282Aguilar-Martínez, J. A., Poza-Carrión, C., & Cubas, P. (2007). Arabidopsis BRANCHED1Acts as an Integrator of Branching Signals within Axillary Buds. The Plant Cell, 19(2), 458-472. doi:10.1105/tpc.106.048934Almeida, J., Rocheta, M., & Galego, L. (1997). Genetic control of flower shape in Antirrhinum majus. Development, 124(7), 1387-1392. doi:10.1242/dev.124.7.1387Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1016/s0022-2836(05)80360-2Ambrose, B. A., Lerner, D. R., Ciceri, P., Padilla, C. M., Yanofsky, M. F., & Schmidt, R. J. (2000). Molecular and Genetic Analyses of the Silky1 Gene Reveal Conservation in Floral Organ Specification between Eudicots and Monocots. Molecular Cell, 5(3), 569-579. doi:10.1016/s1097-2765(00)80450-5Ballester, P., Navarrete-Gómez, M., Carbonero, P., Oñate-Sánchez, L., & Ferrándiz, C. (2015). Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. Physiologia Plantarum, 155(1), 21-32. doi:10.1111/ppl.12327Bartlett, M. E., & Specht, C. D. (2011). Changes in expression pattern of the teosinte branched1- like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany, 98(2), 227-243. doi:10.3732/ajb.1000246Bliss, B. J., Wanke, S., Barakat, A., Ayyampalayam, S., Wickett, N., Wall, P. K., … dePamphilis, C. W. (2013). Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies. BMC Plant Biology, 13(1), 13. doi:10.1186/1471-2229-13-13Busch, A., & Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences, 104(42), 16714-16719. doi:10.1073/pnas.0705338104Citerne, H. L., Reyes, E., Le Guilloux, M., Delannoy, E., Simonnet, F., Sauquet, H., … Damerval, C. (2016). Characterization ofCYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Annals of Botany, 119(3), 367-378. doi:10.1093/aob/mcw219Corley, S. B., Carpenter, R., Copsey, L., & Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences, 102(14), 5068-5073. doi:10.1073/pnas.0501340102Crawford, B. C. W., Nath, U., Carpenter, R., & Coen, E. S. (2004). CINCINNATA Controls Both Cell Differentiation and Growth in Petal Lobes and Leaves of Antirrhinum. Plant Physiology, 135(1), 244-253. doi:10.1104/pp.103.036368Cubas, P. (2002). Role of TCP genes in the evolution of morphological characters in angiosperms. Developmental Genetics and Plant Evolution, 247-266. doi:10.1201/9781420024982.ch13Cubas, P., Lauter, N., Doebley, J., & Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. doi:10.1046/j.1365-313x.1999.00444.xDamerval, C., Citerne, H., Conde e Silva, N., Deveaux, Y., Delannoy, E., Joets, J., … Nadot, S. (2019). Unraveling the Developmental and Genetic Mechanisms Underpinning Floral Architecture in Proteaceae. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00018Damerval, C., Citerne, H., Le Guilloux, M., Domenichini, S., Dutheil, J., Ronse de Craene, L., & Nadot, S. (2013). Asymmetric morphogenetic cues along the transverse plane: Shift from disymmetry to zygomorphy in the flower of Fumarioideae. American Journal of Botany, 100(2), 391-402. doi:10.3732/ajb.1200376Damerval, C., Guilloux, M. L., Jager, M., & Charon, C. (2006). Diversity and Evolution ofCYCLOIDEA-Like TCP Genes in Relation to Flower Development in Papaveraceae. Plant Physiology, 143(2), 759-772. doi:10.1104/pp.106.090324Danisman, S., van der Wal, F., Dhondt, S., Waites, R., de Folter, S., Bimbo, A., … Immink, R. G. H. (2012). Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant Physiology, 159(4), 1511-1523. doi:10.1104/pp.112.200303Danisman, S., van Dijk, A. D. J., Bimbo, A., van der Wal, F., Hennig, L., de Folter, S., … Immink, R. G. H. (2013). Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany, 64(18), 5673-5685. doi:10.1093/jxb/ert337Doebley, J. (2004). The Genetics of Maize Evolution. Annual Review of Genetics, 38(1), 37-59. doi:10.1146/annurev.genet.38.072902.092425Doebley, J., Stec, A., & Gustus, C. (1995). teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 141(1), 333-346. doi:10.1093/genetics/141.1.333Doebley, J., Stec, A., & Hubbard, L. (1997). The evolution of apical dominance in maize. Nature, 386(6624), 485-488. doi:10.1038/386485a0Efroni, I., Blum, E., Goldshmidt, A., & Eshed, Y. (2008). A Protracted and Dynamic Maturation Schedule UnderliesArabidopsisLeaf Development. The Plant Cell, 20(9), 2293-2306. doi:10.1105/tpc.107.057521Elomaa, P., Zhao, Y., & Zhang, T. (2018). Flower heads in Asteraceae—recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Horticulture Research, 5(1). doi:10.1038/s41438-018-0056-8Endress, P. K. (2012). The Immense Diversity of Floral Monosymmetry and Asymmetry Across Angiosperms. The Botanical Review, 78(4), 345-397. doi:10.1007/s12229-012-9106-3Ferrándiz, C., Liljegren, S. J., & Yanofsky, M. F. (2000). Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436Galego, L. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & Development, 16(7), 880-891. doi:10.1101/gad.221002Gaudin, V., Lunness, P. A., Fobert, P. R., Towers, M., Riou-Khamlichi, C., Murray, J. A. H., … Doonan, J. H. (2000). The Expression of D-Cyclin Genes Defines Distinct Developmental Zones in Snapdragon Apical Meristems and Is Locally Regulated by the Cycloidea Gene. Plant Physiology, 122(4), 1137-1148. doi:10.1104/pp.122.4.1137González, F., & Pabón‐Mora, N. (2015). Trickery flowers: the extraordinary chemical mimicry of Aristolochia to accomplish deception to its pollinators. New Phytologist, 206(1), 10-13. doi:10.1111/nph.13328González, F., & Stevenson, D. W. (2000). Perianth development and systematics of Aristolochia. Flora, 195(4), 370-391. doi:10.1016/s0367-2530(17)30995-7Heery, D. M., Kalkhoven, E., Hoare, S., & Parker, M. G. (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387(6634), 733-736. doi:10.1038/42750Hileman, L. C. (2014). Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1648), 20130348. doi:10.1098/rstb.2013.0348Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2017). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. doi:10.1093/molbev/msx281Horn, S., Pabón-Mora, N., Theuß, V. S., Busch, A., & Zachgo, S. (2015). Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. The Plant Journal, 81(4), 559-571. doi:10.1111/tpj.12750Howarth, D. G., & Donoghue, M. J. (2006). Phylogenetic analysis of the «ECE» (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences, 103(24), 9101-9106. doi:10.1073/pnas.0602827103Howarth, D. G., Martins, T., Chimney, E., & Donoghue, M. J. (2011). Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany, 107(9), 1521-1532. doi:10.1093/aob/mcr049Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587-589. doi:10.1038/nmeth.4285Katoh, K. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059-3066. doi:10.1093/nar/gkf436Kosugi, S., & Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal, 30(3), 337-348. doi:10.1046/j.1365-313x.2002.01294.xKoyama, T., Furutani, M., Tasaka, M., & Ohme-Takagi, M. (2006). TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of the Expression of Boundary-Specific Genes inArabidopsis. The Plant Cell, 19(2), 473-484. doi:10.1105/tpc.106.044792Leppik, E. E. (1972). Origin and Evolution of Bilateral Symmetry in Flowers. Evolutionary Biology, 49-85. doi:10.1007/978-1-4757-0256-9_3Li, C., Potuschak, T., Colon-Carmona, A., Gutierrez, R. A., & Doerner, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proceedings of the National Academy of Sciences, 102(36), 12978-12983. doi:10.1073/pnas.0504039102Li, M., Zhang, D., Gao, Q., Luo, Y., Zhang, H., Ma, B., … Xue, Y. (2019). Genome structure and evolution of Antirrhinum majus L. Nature Plants, 5(2), 174-183. doi:10.1038/s41477-018-0349-9Li, S. (2015). The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior, 10(7), e1044192. doi:10.1080/15592324.2015.1044192Li, S., Gutsche, N., & Zachgo, S. (2011). The ROXY1 C-Terminal L**LL Motif Is Essential for the Interaction with TGA Transcription Factors    . Plant Physiology, 157(4), 2056-2068. doi:10.1104/pp.111.185199Lin, Y.-F., Chen, Y.-Y., Hsiao, Y.-Y., Shen, C.-Y., Hsu, J.-L., Yeh, C.-M., … Tsai, W.-C. (2016). Genome-wide identification and characterization ofTCPgenes involved in ovule development ofPhalaenopsis equestris. Journal of Experimental Botany, 67(17), 5051-5066. doi:10.1093/jxb/erw273Da Luo, Carpenter, R., Copsey, L., Vincent, C., Clark, J., & Coen, E. (1999). Control of Organ Asymmetry in Flowers of Antirrhinum. Cell, 99(4), 367-376. doi:10.1016/s0092-8674(00)81523-8Luo, D., Carpenter, R., Vincent, C., Copsey, L., & Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature, 383(6603), 794-799. doi:10.1038/383794a0Madrigal, Y., Alzate, J. F., & Pabón-Mora, N. (2017). Evolution and Expression Patterns of TCP Genes in Asparagales. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00009Martín-Trillo, M., & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science, 15(1), 31-39. doi:10.1016/j.tplants.2009.11.003MillerMA PfeifferW SchwartzT.2010.Creating the CIPRES Science Gateway for inference of large phylogenetic trees. [WWW document] URLhttp://www.phylo.org[accessed 5 June 2020].Mondragón-Palomino, M., & Trontin, C. (2011). High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots. Annals of Botany, 107(9), 1533-1544. doi:10.1093/aob/mcr059Nath, U., Crawford, B. C. W., Carpenter, R., & Coen, E. (2003). Genetic Control of Surface Curvature. Science, 299(5611), 1404-1407. doi:10.1126/science.1079354Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., & Hervé, C. (2007). TCP Transcription Factors Predate the Emergence of Land Plants. Journal of Molecular Evolution, 65(1), 23-33. doi:10.1007/s00239-006-0174-zNguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. doi:10.1093/molbev/msu300Pabón-Mora, N., Suárez-Baron, H., Ambrose, B. A., & González, F. (2015). Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01095Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958Parapunova, V., Busscher, M., Busscher-Lange, J., Lammers, M., Karlova, R., Bovy, A. G., … de Maagd, R. A. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 14(1). doi:10.1186/1471-2229-14-157Peréz-Mesa, P., Ortíz-Ramírez, C. I., González, F., Ferrándiz, C., & Pabón-Mora, N. (2020). Expression of gynoecium patterning transcription factors in Aristolochia fimbriata (Aristolochiaceae) and their contribution to gynostemium development. EvoDevo, 11(1). doi:10.1186/s13227-020-00149-8Preston, J. C., & Hileman, L. C. (2012). Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo, 3(1), 6. doi:10.1186/2041-9139-3-6Preston, J. C., Kost, M. A., & Hileman, L. C. (2009). Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. New Phytologist, 182(3), 751-762. doi:10.1111/j.1469-8137.2009.02794.xRambautA.2014.FigTree: tree figure drawing tool. [WWW document] URLhttp://tree.bio.ed.ac.uk/software/figtree/.Rudall, P. J., & Bateman, R. M. (2004). Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. New Phytologist, 162(1), 25-44. doi:10.1111/j.1469-8137.2004.01032.xSargent, R. D. (2004). Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1539), 603-608. doi:10.1098/rspb.2003.2644Suárez-Baron, H., Alzate, J. F., González, F., Ambrose, B. A., & Pabón-Mora, N. (2019). Genetic mechanisms underlying perianth epidermal elaboration of Aristolochia ringens Vahl (Aristolochiaceae). Flora, 253, 56-66. doi:10.1016/j.flora.2019.03.004Suárez-Baron, H., Pérez-Mesa, P., Ambrose, B. A., González, F., & Pabón-Mora, N. (2016). Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes inAristolochia fimbriata(Aristolochiaceae). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 328(1-2), 55-71. doi:10.1002/jez.b.22686Viola, I. L., Uberti Manassero, N. G., Ripoll, R., & Gonzalez, D. H. (2011). The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochemical Journal, 435(1), 143-155. doi:10.1042/bj20101019Wang, J., Wang, Y., & Luo, D. (2010). LjCYC Genes Constitute Floral Dorsoventral Asymmetry in Lotus japonicus. Journal of Integrative Plant Biology, 52(11), 959-970. doi:10.1111/j.1744-7909.2010.00926.xYuan, Z., Gao, S., Xue, D.-W., Luo, D., Li, L.-T., Ding, S.-Y., … Zhang, D.-B. (2008). RETARDED PALEA1 Controls Palea Development and Floral Zygomorphy in Rice  . Plant Physiology, 149(1), 235-244. doi:10.1104/pp.108.128231Zhang, W., Kramer, E. M., & Davis, C. C. (2010). Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences, 107(14), 6388-6393. doi:10.1073/pnas.0910155107Zhang, W., Steinmann, V. W., Nikolov, L., Kramer, E. M., & Davis, C. C. (2013). Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.0030
    corecore