2,117 research outputs found

    Evolution of genes and repeats in the Nimrod superfamily

    Get PDF
    The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response

    Una aproximació antropològica

    Get PDF

    Levels of genetic polymorphism: marker loci versus quantitative traits

    Get PDF
    Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species

    Molecular and morphometric variation in European populations of the articulate brachiopod <i>Terebeatulina retusa</i>

    Get PDF
    Molecular and morphometric variation within and between population samples of the articulate brachiopod &lt;i&gt;Terebratulina&lt;/i&gt; spp., collected in 1985-1987 from a Norwegian fjord, sea lochs and costal sites in western Scotland, the southern English Channel (Brittany) and the western Mediterranean, were measured by the analysis of variation in the lengths of mitochondrial DNA (mtDNA) fragments produced by digestion with nine restriction endonucleases and by multivariate statistical analysis of six selected morphometric parameters. Nucleotide difference within each population sample was high. Nucleotide difference between population samples from the Scottish sites, both those that are tidally contiguous and those that appear to be geographically isolated, were not significantly different from zero. Nucleotide differences between the populations samples from Norway, Brittany, Scotland and the western Mediterranean were also very low. Morphometric analysis confirmed the absence of substantial differentiation

    Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina Lindl.).

    Get PDF
    Japanese plums are classified as climacteric; however, some economically important cultivars selected in California produce very little ethylene and require long ripening both "on" and "off" the tree to reach eating-ripe firmness. To unravel the ripening behavior of different Japanese plum cultivars, ripening was examined in the absence (air) or in the presence of ethylene or propylene (an ethylene analog) following a treatment or not with 1-methylcyclopropene (1-MCP, an ethylene action inhibitor). Detailed physiological studies revealed for the first time three distinct ripening types in plum fruit: climacteric, suppressed-climacteric, and non-climacteric. Responding to exogenous ethylene or propylene, the slow-softening supressed-climacteric cultivars produced detectable amounts of ethylene, in contrast to the novel non-climacteric cultivar that produced no ethylene and softened extremely slowly. Genetic analysis using microsatellite markers produced identical DNA profiles for the climacteric cultivars "Santa Rosa" and "July Santa Rosa," the suppressed-climacteric cultivars "Late Santa Rosa," "Casselman," and "Roysum" and the novel non-climacteric "Sweet Miriam," as expected since historic records present most of these cultivars as bud-sport mutations derived initially from "Santa Rosa." This present study provides a novel fruit system to address the molecular basis of ripening and to develop markers that assist breeders in providing high-quality stone fruit cultivars that can remain "on-tree," increasing fruit flavor, saving harvesting costs, and potentially reducing the need for low-temperature storage during postharvest handling

    Poisson structures for reduced non-holonomic systems

    Full text link
    Borisov, Mamaev and Kilin have recently found certain Poisson structures with respect to which the reduced and rescaled systems of certain non-holonomic problems, involving rolling bodies without slipping, become Hamiltonian, the Hamiltonian function being the reduced energy. We study further the algebraic origin of these Poisson structures, showing that they are of rank two and therefore the mentioned rescaling is not necessary. We show that they are determined, up to a non-vanishing factor function, by the existence of a system of first-order differential equations providing two integrals of motion. We generalize the form of that Poisson structures and extend their domain of definition. We apply the theory to the rolling disk, the Routh's sphere, the ball rolling on a surface of revolution, and its special case of a ball rolling inside a cylinder.Comment: 22 page

    Inference of population splits and mixtures from genome-wide allele frequency data

    Full text link
    Many aspects of the historical relationships between populations in a species are reflected in genetic data. Inferring these relationships from genetic data, however, remains a challenging task. In this paper, we present a statistical model for inferring the patterns of population splits and mixtures in multiple populations. In this model, the sampled populations in a species are related to their common ancestor through a graph of ancestral populations. Using genome-wide allele frequency data and a Gaussian approximation to genetic drift, we infer the structure of this graph. We applied this method to a set of 55 human populations and a set of 82 dog breeds and wild canids. In both species, we show that a simple bifurcating tree does not fully describe the data; in contrast, we infer many migration events. While some of the migration events that we find have been detected previously, many have not. For example, in the human data we infer that Cambodians trace approximately 16% of their ancestry to a population ancestral to other extant East Asian populations. In the dog data, we infer that both the boxer and basenji trace a considerable fraction of their ancestry (9% and 25%, respectively) to wolves subsequent to domestication, and that East Asian toy breeds (the Shih Tzu and the Pekingese) result from admixture between modern toy breeds and "ancient" Asian breeds. Software implementing the model described here, called TreeMix, is available at http://treemix.googlecode.comComment: 28 pages, 6 figures in main text. Attached supplement is 22 pages, 15 figures. This is an updated version of the preprint available at http://precedings.nature.com/documents/6956/version/

    Development of Genome-wide Simple Sequence Repeat Markers Using Whole-genome Shotgun Sequences of Sorghum (Sorghum bicolor (L.) Moench)

    Get PDF
    Simple sequence repeat (SSR) markers with a high degree of polymorphism contribute to the molecular dissection of agriculturally important traits in sorghum (Sorghum bicolor (L.) Moench). We designed 5599 non-redundant SSR markers, including regions flanking the SSRs, in whole-genome shotgun sequences of sorghum line ATx623. (AT/TA)n repeats constituted 26.1% of all SSRs, followed by (AG/TC)n at 20.5%, (AC/TG)n at 13.7% and (CG/GC)n at 11.8%. The chromosomal locations of 5012 SSR markers were determined by comparing the locations identified by means of electronic PCR with the predicted positions of 34 008 gene loci. Most SSR markers had a similar distribution to the gene loci. Among 970 markers validated by fragment analysis, 67.8% (658 of 970) markers successfully provided PCR amplification in sorghum line BTx623, with a mean polymorphism rate of 45.1% (297 of 658) for all SSR loci in combinations of 11 sorghum lines and one sudangrass (Sorghum sudanense (Piper) Stapf) line. The product of 5012 and 0.678 suggests that ∼3400 SSR markers could be used to detect SSR polymorphisms and that more than 1500 (45.1% of 3400) markers could reveal SSR polymorphisms in combinations of Sorghum lines

    Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily

    Full text link
    In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nfe \approx 2-4) and estimates accounting for both seed and pollen donors gave also low values (Ne \approx 35-50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees
    corecore