1,448 research outputs found
Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects
Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum
Chromodynamics (QCD) promise great predictive power addressing phenomena over
vast scales from the microscopic to cosmic scales. However, new
non-perturbative tools are required for physics to span from one scale to the
next. I outline recent theoretical and computational progress to build these
bridges and provide illustrative results for Hamiltonian Light Front Field
Theory. One key area is our development of basis function approaches that cast
the theory as a Hamiltonian matrix problem while preserving a maximal set of
symmetries. Regulating the theory with an external field that can be removed to
obtain the continuum limit offers additional possibilities as seen in an
application to the anomalous magnetic moment of the electron. Recent progress
capitalizes on algorithm and computer developments for setting up and solving
very large sparse matrix eigenvalue problems. Matrices with dimensions of 20
billion basis states are now solved on leadership-class computers for their
low-lying eigenstates and eigenfunctions.Comment: 8 pages with 2 figure
Low-lying GT(+) strength in Co-64 studied via the Ni-64(d,He-2)Co-64 reaction
The Ni-64(d,He-2)Co-64 reaction was studied at the AGOR cyclotron of KVI, Groningen, with the Big-Bite Spectrometer and the EuroSuperNova detector using a 171-MeV deuteron beam. An energy resolution of about 110 keV was achieved. In addition to the J(pi) = 1(+) ground state, several other 1(+) states could be identified in Co-64 and the strengths of the corresponding Gamow-Teller transitions were determined. The obtained strength distribution was compared with theoretical predictions and former (n,p) experimental results and displayed a good agreement. Due to the good energy resolution, detailed spectroscopic information was obtained, which supplements the data base needed for network calculations for supernova scenarios
The role of elections as drivers of tropical deforestation
Tropical forests support immense biodiversity and provide essential ecosystem services for billions of people. Despite this value, tropical deforestation continues at a high rate. Emerging evidence suggests that elections can play an important role in shaping deforestation, for instance by incentivising politicians to allow increased utilisation of forests in return for political support. Nevertheless, the role of elections as driver of deforestation has not yet been comprehensively tested at broad geographic scales. Here, we created an annual database from 2001 to 2018 on political elections and forest loss for 55 tropical nations and modelled the effect of elections on deforestation. In total, 1.5 million km2 of forest was lost during this time period, especially in the Amazon, the Congo Basin and in Southeast Asia. The annual rate of deforestation increased in 37 (67 %) of the analysed countries. Deforestation was significantly lower in years with uncompetitive lower chamber elections compared to competitive election years (i.e. when the opposition can participate in elections and has a legitimate chance to gain governmental power). Our results show a pervasive loss of tropical forests and suggest that competitive elections can be potential drivers of deforestation. Future analyses at higher resolution (intra-annual deforestation and sub-national governance) and simultaneous collection of data on additional mechanisms (legislative changes, financial investments, and binding term limits) will likely provide additional insights into the impacts of elections. We therefore recommend that organisations monitoring election transparency and fairness should also monitor environmental impacts such as forest loss, habitat destruction and resource exploitation.Environmental Biolog
In-beam fast-timing measurements in 103,105,107Cd
Fast-timing measurements were performed recently in the region of the
medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions.
Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors
working in coincidence. Results on new and re-evaluated half-lives are
discussed within a systematic of transition rates. The states in
103,105,107Cd are interpreted as arising from a single-particle excitation. The
half-life analysis of the states in 103,105,107Cd shows no change in
the single-particle transition strength as a function of the neutron number
Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics
The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well
New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels : Preliminary results in the RRR
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70's, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its "High Priority Request List" and its report WPEC-26 that the capture cross section of 242Pu should be measured with an accuracy of at least 7-12% in the neutron energy range between 500 eV and 500 keV. This work presents a brief description of the measurement performed at n-TOF-EAR1, the data reduction process and the first ToF capture measurement on this isotope in the last 40 years, providing preliminary individual resonance parameters beyond the current energy limits in the evaluations, as well as a preliminary set of average resonance parameters
Search for Top Squark Pair Production in the Dielectron Channel
This report describes the first search for top squark pair production in the
channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using
74.9 +- 8.9 pb^-1 of data collected using the D0 detector. A 95% confidence
level upper limit on sigma*B is presented. The limit is above the theoretical
expectation for sigma*B for this process, but does show the sensitivity of the
current D0 data set to a particular topology for new physics.Comment: Five pages, including three figures, submitted to PRD Brief Report
Search for Production via Trilepton Final States in collisions at TeV
We have searched for associated production of the lightest chargino,
, and next-to-lightest neutralino, , of the
Minimal Supersymmetric Standard Model in collisions at
\mbox{ = 1.8 TeV} using the \D0 detector at the Fermilab Tevatron
collider. Data corresponding to an integrated luminosity of 12.5 \ipb
were examined for events containing three isolated leptons. No evidence for
pair production was found. Limits on
BrBr are
presented.Comment: 17 pages (13 + 1 page table + 3 pages figures). 3 PostScript figures
will follow in a UUEncoded, gzip'd, tar file. Text in LaTex format. Submitted
to Physical Review Letters. Replace comments - Had to resumbmit version with
EPSF directive
Measurement of the Boson Mass
A measurement of the mass of the boson is presented based on a sample of
5982 decays observed in collisions at
= 1.8~TeV with the D\O\ detector during the 1992--1993 run. From a
fit to the transverse mass spectrum, combined with measurements of the
boson mass, the boson mass is measured to be .Comment: 12 pages, LaTex, style Revtex, including 3 postscript figures
(submitted to PRL
- …