116 research outputs found

    Mechanical oscillations in lasing microspheres

    Get PDF
    We investigate the feasibility of activating coherent mechanical oscillations in lasing microspheres by modulating the laser emission at a mechanical eigenfrequency. To this aim, 1.5% Nd3+:Barium-Titanium-Silicate microspheres with diameters around 50 {\mu}m were used as high quality factor (Q>10^6) whispering gallery mode lasing cavities. We have implemented a pump-and-probe technique in which the pump laser used to excite the Nd3+ ions is focused on a single microsphere with a microscope objective and a probe laser excites a specific optical mode with the evanescent field of a tapered fibre. The studied microspheres show monomode and multi-mode lasing action, which can be modulated in the best case up to 10 MHz. We have optically transduced thermally-activated mechanical eigenmodes appearing in the 50-70 MHz range, the frequency of which decreases with increasing the size of the microspheres. In a pump-and-probe configuration we observed modulation of the probe signal up to the maximum pump modulation frequency of our experimental setup, i.e., 20 MHz. This modulation decreases with frequency and is unrelated to lasing emission, pump scattering or thermal effects. We associate this effect to free-carrier-dispersion induced by multiphoton pump light absorption. On the other hand, we conclude that, in our current experimental conditions, it was not possible to resonantly excite the mechanical modes. Finally, we discuss on how to overcome these limitations by increasing the modulation frequency of the lasing emission and decreasing the frequency of the mechanical eigenmodes displaying a strong degree of optomechanical coupling.Comment: 17 pages, 5 figure

    High frequency mechanical excitation of a silicon nanostring with piezoelectric aluminum nitride layers

    Get PDF
    A strong trend for quantum based technologies and applications follows the avenue of combining different platforms to exploit their complementary technological and functional advantages. Micro and nano-mechanical devices are particularly suitable for hybrid integration due to the easiness of fabrication at multi-scales and their pervasive coupling with electrons and photons. Here, we report on a nanomechanical technological platform where a silicon chip is combined with an aluminum nitride layer. Exploiting the AlN piezoelectricity, Surface Acoustic Waves are injected in the Si layer where the material has been localy patterned and etched to form a suspended nanostring. Characterizing the nanostring vertical displacement induced by the SAW, we found an external excitation peak efficiency in excess of 500 pm/V at 1 GHz mechanical frequency. Exploiting the long term expertise in silicon photonic and electronic devices as well as the SAW robustness and versatility, our technological platform represents a strong candidate for hybrid quantum systems

    Far-field characterization of the thermal dynamics in lasing microspheres

    Get PDF
    This work reports the dynamical thermal behavior of lasing microspheres placed on a dielectric substrate while they are homogeneously heated-up by the top-pump laser used to excite the active medium. The lasing modes are collected in the far-field and their temporal spectral traces show characteristic lifetimes of about 2 ms. The latter values scale with the microsphere radius and are independent of the pump power in the studied range. Finite-Element Method simulations reproduce the experimental results, revealing that the thermal dynamics is dominated by the heat dissipated towards the substrate through the medium surrounding the contact point. The characteristic system scale regarding thermal transport is of few hundreds of nanometers, thus enabling an effective toy model for investigating heat conduction in non-continuum gaseous media and near-field radiative energy transfer.Comment: 13 pages, 5 figure

    Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects

    Get PDF
    Under the terms of the Creative Commons Attribution (CC BY) license to their work.We report on the modification of the optical and mechanical properties of a silicon 1D optomechanical crystal cavity due to thermo-optic effects in a high phonon/photon population regime. The cavity heats up due to light absorption in a way that shifts the optical modes towards longer wavelengths and the mechanical modes to lower frequencies. By combining the experimental optical results with finite-difference time-domain simulations, we establish a direct relation between the observed wavelength drift and the actual effective temperature increase of the cavity. By assuming that the Young's modulus decreases accordingly to the temperature increase, we find a good agreement between the mechanical mode drift predicted using a finite element method and the experimental one.This work was supported by the EU through the project TAILPHOX (ICT-FP7-233883) and the ERC Advanced Grant SOULMAN (ERC-FP7-321122) and the Spanish projects TAPHOR (MAT2012-31392).Peer Reviewe

    Instalative art as a teaching resource for environmental education in Childhood Education

    Get PDF
    RESUMEN El niño aprende haciendo, manipulando los objetos y la realidad que se encuentra. Mediante la creación artística se puede abrir la puerta a nuevos aprendizajes, algunos de ellos pueden ser los siguientes: psicomotriz, emocional, cognitivo, artístico, lógico-matemático, lingüístico… Con el trabajo centrado en la instalación artística se le da al niño un espacio físico que le permite pensar mediante la actividad. De este modo, la manipulación de objetos durante el juego, ayuda al niño a descubrir y a experimentar a través del manejo de los materiales de dicha composición artística. La propuesta escogida en este caso ha sido la utilización de materiales presentes en la naturaleza. Con esta elección se intenta acercar la educación medioambiental a los niños a través del arte. Este trabajo, diseñado para aulas de educación infantil (2-6 años), consta de dos partes diferenciadas y relacionadas entre sí. Por un lado, se hace un recorrido teórico por los antecedentes del arte de la instalación enmarcada en el arte contemporáneo, donde se verán algunos de los autores que han contribuido al desarrollo de esta disciplina artística. De igual manera se revisa la importancia de la educación en contenidos de naturaleza y medio ambiente. En una segunda parte del trabajo, se desarrolla una parte más práctica para ilustrar a maestros y maestras acerca de cómo se lleva al espacio físico esta idea de instalación artística. Para ello, se mostrarán tres ejemplos de ellas y se llevará a cabo el análisis de su montaje, desarrollo y documentación de la actividad.ABSTRACT The child learns by doing, manipulating the objects and the reality arround them. Through artistic creation he will be able to access new learnings, such as: psychomotor, emotional, cognitive, artistic, logical-mathematical, linguistic,... Such work focused on the artistic installation, allows children to enjoy a place that gives them the chance to think while they are active. Thereby, object manipulation during the game helps them to learn through the handling of the materials of such artistic trend. The chosen approach in this case has been the usage of the materials which are found in nature. Along with this, we try to bring the environment friendly education close to the clindren through art. This work designed for preschool classrooms (2-6 years), consists of two different parts which are related to each other. The first one, consists in a theoretical journey through the background of the art of the installation framed in contemporary art, where we will talk about some of the authors who have contributed to the development of this artistic style. As well, the importance of education in content of nature and environment is reviewed. In the second part of the work, the development of a more practical part will be done to illustrate teachers about how the idea of artistic installation is taken to the physical space. Three examples of it will be shown and the analysis will be carried out, as well the development and the documentation of the activity.Grado en Magisterio en Educación Infanti

    Nonlinear dynamics and chaos in an optomechanical beam

    Get PDF
    [EN] Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, for instance, the relative detuning between an optical resonance and the excitation laser. Here, we exploit these nonlinearities and their intercoupling with the mechanical degrees of freedom of a silicon optomechanical nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser we demonstrate accurate control to activate two-and four-dimensional limit cycles, a period-doubling route and a six-dimensional chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between two-and four-dimensional limit cycles, between different coherent mechanical states and between four-dimensional limit cycles and chaos. Our findings open new routes towards exploiting silicon-based optomechanical photonic crystals as a versatile building block to be used in neurocomputational networks and for chaos-based applications.This work was supported by the European Comission project PHENOMEN (H2020-EU-713450), the Spanish Severo Ochoa Excellence program and the MINECO project PHENTOM (FIS2015-70862-P). DNU, PDG and MFC gratefully acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392), a Beatriu de Pinos postdoctoral fellowship (BP-DGR 2015 (B) and a Severo Ochoa studentship, respectively. We would like to acknowledge Jose C. Sabina de Lis, J.M. Plata Suarez, A. Trifonova and C. Masoller for fruitful discussions.Navarro-Urrios, D.; Capuj, NE.; Colombano, MF.; García, PD.; Sledzinska, M.; Alzina, F.; Griol Barres, A.... (2017). Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications. 8. https://doi.org/10.1038/ncomms14965S8Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press (2014).Lorenz, E. N. Deterministic nonperiodic ow. J. Atmos. Sci. 20, 130–141 (1963).Sparrow, C. The Lorenz Attractor: Bifurcations, Chaos and Strange Attractors Springer (1982).Aspelmeyer, M., Kippenberg, T. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).Krause, A. G. et al. Nonlinear radiation pressure dynamics in an optomechanical crystal. Phys. Rev. Lett. 115, 233601 (2015).Metzger, C. et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008).Bakemeier, L., Alvermann, A. & Fehske, H. Route to chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015).Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015).Williams, C. R. et al. Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013).Sciamanna, M. Optomechanics: vibrations copying optical chaos. Nat. Photon. 10, 366–368 (2016).Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016).Wu, J. et al. Dynamical chaos in chip-scale optomechanical oscillators. Preprint at https://arxiv.org/abs/1608.05071 (2016).Navarro-Urrios, D., Tredicucci, A. & Sotomayor-Torres, C. M. Coherent phonon generation in optomechanical crystals. SPIE Newsroom, doi:10.1117/2.1201507.006036 (2015).Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5, 15733 (2015).Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006).Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18, 094006 (2016).Kemiktarak, U., Durand, M., Metcalfe, M. & Lawall, J. Mode competition and anomalous cooling in a multimode phonon laser. Phys. Rev. Lett. 113, 030802 (2014).Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993).Sprott, J. C. Chaos and Time-Series Analysis Vol. 69, Citeseer (2003).Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).Hoppensteadt, F. C. & Izhikevich, E. M. Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, Reg. Papers 48, 133–138 (2001).Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011).Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014).Johnson, S. G. et al. Perturbation theory for Maxwells equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).Pennec, Y. et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics 3, 413–440 (2014)

    Ferromagnetic resonance assisted optomechanical magnetometer

    Get PDF
    The resonant enhancement of mechanical and optical interaction in optomechanical cavities enables their use as extremely sensitive displacement and force detectors. In this work we demonstrate a hybrid magnetometer that exploits the coupling between the resonant excitation of spin waves in a ferromagnetic insulator and the resonant excitation of the breathing mechanical modes of a glass microsphere deposited on top. The interaction is mediated by magnetostriction in the ferromagnetic material and the consequent mechanical driving of the microsphere. The magnetometer response thus relies on the spectral overlap between the ferromagnetic resonance and the mechanical modes of the sphere, leading to a peak sensitivity better than 900 pT Hz−1/2^{-1/2} at 206 MHz when the overlap is maximized. By externally tuning the ferromagnetic resonance frequency with a static magnetic field we demonstrate sensitivity values at resonance around a few nT Hz−1/2^{-1/2} up to the GHz range. Our results show that our hybrid system can be used to build high-speed sensor of oscillating magnetic fields

    Heat dissipation in few-layer MoS2and MoS2/hBN heterostructure

    Get PDF
    State-of-the-art fabrication and characterisation techniques have been employed to measure the thermal conductivity of suspended, single-crystalline MoS2 and MoS2/hBN heterostructures. Two-laser Raman scattering thermometry was used combined with real time measurements of the absorbed laser power. Measurements on MoS2 layers with thicknesses of 5 and 14 nm exhibit thermal conductivity in the range between 12 Wm-1 K-1 and 24 Wm-1 K-1. Additionally, after determining the thermal conductivity of the latter MoS2 sample, an hBN flake was transferred onto it and the effective thermal conductivity of the heterostructure was subsequently measured. Remarkably, despite that the thickness of the hBN layer was less than a hal of the thickness of the MoS2 layer, the heterostructure showed an almost eight-fold increase in the thermal conductivity, being able to dissipate more than ten times the laser power without any visible sign of damage. These results are consistent with a high thermal interface conductance G between MoS2 and hBN and an efficient in-plane heat spreading driven by hBN. Indeed, we estimate G ∼ 70 MW m-2 K-1 for hBN layer thermal conductivity of 450 Wm-1 K-1 which is significantly higher than previously reported values. Our work therefore demonstrates that the insertion of hBN layers in potential MoS2-based devices holds the promise for efficient thermal management.This work was partially funded by the European Union under the H2020 FET-OPEN NANOPOLY (GA 289061) and Spanish Ministry of Science projects SIP (PGC2018-101743-B-I00), ADAGIO (PGC2018-094490-B-C22), 2DTecBio (FIS2017-85787-R) and 2DENGINE (PID2019-111773RB- I00/AEI/10.13039/501100011033). E D C acknowledges the Spanish Ministry of Science for the Juan de la Cierva Fellowship (JC-2015-25201) and the Ramon y Cajal fellowship (RYC2019-027879-I). D N U and J F S acknowledge the Ramón y Cajal fellowships RYC2014-15392 and RYC2019-028368-I/AEI/10.13039/501100011033. M V C acknowledges project (Reference No. 103739) funded by the Agencia Estatal de Investigación through the PCI 2019 call. The Catalan Institute of Nanoscience and Nanotechnology (ICN2) is funded by the CERCA program/Generalitat de Catalunya, and is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). K W and T T acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant Number JPMXP0112101001) and JSPS KAKENHI (Grant Numbers 19H05790 and JP20H00354)

    Nanocrystalline silicon optomechanical cavities

    Get PDF
    "© 2018 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"[EN] Silicon on insulator photonics has offered a versatile platform for the recent development of integrated optomechanical circuits. However, there are some constraints such as the high cost of the wafers and limitation to a single physical device level. In the present work we investigate nanocrystalline silicon as an alternative material for optomechanical devices. In particular we demonstrate that optomechanical crystal cavities fabricated of nanocrystalline silicon have optical and mechanical properties enabling non-linear dynamical behaviour and effects such as thermo-optic/free-carrier-dispersion self-pulsing, phonon lasing and chaos, all at low input laser power and with typical frequencies as high as 0.3 GHz. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing AgreementEuropean Commission project PHENOMEN (H2020-EU-713450), MINECO Severo Ochoa Excellence program (SEV-2013-0295), MINECO (FIS2015-70862-P, RYC-2014-15392) and CERCA Programme/Generalitat de Catalunya.Navarro-Urrios, D.; Capuj, N.; Maire, J.; Colombano, M.; Jaramillo-Fernandez, J.; Chavez-Angel, E.; Martín-Rodríguez, LL.... (2018). Nanocrystalline silicon optomechanical cavities. Optics Express. 26(8):9829-9839. https://doi.org/10.1364/OE.26.009829S98299839268Kippenberg, T. J., & Vahala, K. J. (2008). Cavity Optomechanics: Back-Action at the Mesoscale. Science, 321(5893), 1172-1176. doi:10.1126/science.1156032Aspelmeyer, M., Kippenberg, T. J., & Marquardt, F. (2014). Cavity optomechanics. Reviews of Modern Physics, 86(4), 1391-1452. doi:10.1103/revmodphys.86.1391Navarro-Urrios, D., Capuj, N. E., Gomis-Bresco, J., Alzina, F., Pitanti, A., Griol, A., … Sotomayor Torres, C. M. (2015). A self-stabilized coherent phonon source driven by optical forces. Scientific Reports, 5(1). doi:10.1038/srep15733Navarro-Urrios, D., Capuj, N. E., Colombano, M. F., García, P. D., Sledzinska, M., Alzina, F., … Sotomayor-Torres, C. M. (2017). Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications, 8(1). doi:10.1038/ncomms14965Leijssen, R., La Gala, G. R., Freisem, L., Muhonen, J. T., & Verhagen, E. (2017). Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nature Communications, 8(1). doi:10.1038/ncomms16024Gil-Santos, E., Labousse, M., Baker, C., Goetschy, A., Hease, W., Gomez, C., … Favero, I. (2017). Light-Mediated Cascaded Locking of Multiple Nano-Optomechanical Oscillators. Physical Review Letters, 118(6). doi:10.1103/physrevlett.118.063605Shah, S. Y., Zhang, M., Rand, R., & Lipson, M. (2015). Master-Slave Locking of Optomechanical Oscillators over a Long Distance. Physical Review Letters, 114(11). doi:10.1103/physrevlett.114.113602Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., & Kippenberg, T. J. (2010). Optomechanically Induced Transparency. Science, 330(6010), 1520-1523. doi:10.1126/science.1195596Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., & Kippenberg, T. J. (2012). Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 482(7383), 63-67. doi:10.1038/nature10787Tomes, M., & Carmon, T. (2009). Photonic Micro-Electromechanical Systems Vibrating atX-band (11-GHz) Rates. Physical Review Letters, 102(11). doi:10.1103/physrevlett.102.113601Thompson, J. D., Zwickl, B. M., Jayich, A. M., Marquardt, F., Girvin, S. M., & Harris, J. G. E. (2008). Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452(7183), 72-75. doi:10.1038/nature06715Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461Safavi-Naeini, A. H., Alegre, T. P. M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., … Painter, O. (2011). Electromagnetically induced transparency and slow light with optomechanics. Nature, 472(7341), 69-73. doi:10.1038/nature09933Pennec, Y., Laude, V., Papanikolaou, N., Djafari-Rouhani, B., Oudich, M., El Jallal, S., … Martínez, A. (2014). Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 3(6), 413-440. doi:10.1515/nanoph-2014-0004Davanço, M., Ates, S., Liu, Y., & Srinivasan, K. (2014). Si3N4 optomechanical crystals in the resolved-sideband regime. Applied Physics Letters, 104(4), 041101. doi:10.1063/1.4858975Balram, K. C., Davanço, M. I., Song, J. D., & Srinivasan, K. (2016). Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nature Photonics, 10(5), 346-352. doi:10.1038/nphoton.2016.46Bochmann, J., Vainsencher, A., Awschalom, D. D., & Cleland, A. N. (2013). Nanomechanical coupling between microwave and optical photons. Nature Physics, 9(11), 712-716. doi:10.1038/nphys2748Xiong, C., Pernice, W. H. P., Sun, X., Schuck, C., Fong, K. Y., & Tang, H. X. (2012). Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New Journal of Physics, 14(9), 095014. doi:10.1088/1367-2630/14/9/095014Gomis-Bresco, J., Navarro-Urrios, D., Oudich, M., El-Jallal, S., Griol, A., Puerto, D., … Torres, C. M. S. (2014). A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 5(1). doi:10.1038/ncomms5452Heck, M. J. R., Bauters, J. F., Davenport, M. L., Spencer, D. T., & Bowers, J. E. (2014). Ultra-low loss waveguide platform and its integration with silicon photonics. Laser & Photonics Reviews, 8(5), 667-686. doi:10.1002/lpor.201300183Solehmainen, K., Aalto, T., Dekker, J., Kapulainen, M., Harjanne, M., Kukli, K., … Leskela, M. (2005). Dry-etched silicon-on-insulator waveguides with low propagation and fiber-coupling losses. Journal of Lightwave Technology, 23(11), 3875-3880. doi:10.1109/jlt.2005.857750Sekoguchi, H., Takahashi, Y., Asano, T., & Noda, S. (2014). Photonic crystal nanocavity with a Q-factor of ~9 million. Optics Express, 22(1), 916. doi:10.1364/oe.22.000916Almeida, V. R., Barrios, C. A., Panepucci, R. R., & Lipson, M. (2004). All-optical control of light on a silicon chip. Nature, 431(7012), 1081-1084. doi:10.1038/nature02921Narayanan, K., & Preble, S. F. (2010). Optical nonlinearities in hydrogenated-amorphous silicon waveguides. Optics Express, 18(9), 8998. doi:10.1364/oe.18.008998Preston, K., Dong, P., Schmidt, B., & Lipson, M. (2008). High-speed all-optical modulation using polycrystalline silicon microring resonators. Applied Physics Letters, 92(15), 151104. doi:10.1063/1.2908869Wang, K.-Y., & Foster, A. C. (2012). Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides. Optics Letters, 37(8), 1331. doi:10.1364/ol.37.001331Matres, J., Ballesteros, G. C., Gautier, P., Fédéli, J.-M., Martí, J., & Oton, C. J. (2013). High nonlinear figure-of-merit amorphous silicon waveguides. Optics Express, 21(4), 3932. doi:10.1364/oe.21.003932Waldow, M., Plötzing, T., Gottheil, M., Först, M., Bolten, J., Wahlbrink, T., & Kurz, H. (2008). 25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Optics Express, 16(11), 7693. doi:10.1364/oe.16.007693Wang, K.-Y., Petrillo, K. G., Foster, M. A., & Foster, A. C. (2012). Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides. Optics Express, 20(22), 24600. doi:10.1364/oe.20.024600Ylönen, M., Torkkeli, A., & Kattelus, H. (2003). In situ boron-doped LPCVD polysilicon with low tensile stress for MEMS applications. Sensors and Actuators A: Physical, 109(1-2), 79-87. doi:10.1016/j.sna.2003.09.017Theodorakos, I., Zergioti, I., Vamvakas, V., Tsoukalas, D., & Raptis, Y. S. (2014). Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications. Journal of Applied Physics, 115(4), 043108. doi:10.1063/1.4863402Navarro-Urrios, D., Gomis-Bresco, J., El-Jallal, S., Oudich, M., Pitanti, A., Capuj, N., … Sotomayor Torres, C. M. (2014). Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam. AIP Advances, 4(12), 124601. doi:10.1063/1.4902171Barclay, P. E., Srinivasan, K., & Painter, O. (2005). Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper. Optics Express, 13(3), 801. doi:10.1364/opex.13.000801Cuffe, J., Ristow, O., Chávez, E., Shchepetov, A., Chapuis, P.-O., Alzina, F., … Sotomayor Torres, C. M. (2013). Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes. Physical Review Letters, 110(9). doi:10.1103/physrevlett.110.095503Volklein, F., & Balles, H. (1992). A Microstructure For Measurement Of Thermal Conductivity Of Polysilicon Thin Films. Journal of Microelectromechanical Systems, 1(4), 193-196. doi:10.1109/jmems.1992.752511Pennec, Y., Rouhani, B. D., El Boudouti, E. H., Li, C., El Hassouani, Y., Vasseur, J. O., … Martinez, A. (2010). Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 18(13), 14301. doi:10.1364/oe.18.014301Escalante, J. M., Martínez, A., & Laude, V. (2014). Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics, 115(6), 064302. doi:10.1063/1.486466
    • …
    corecore