30 research outputs found

    Coherent intracerebral brain oscillations during learned continuous tracking movements

    Get PDF
    The aim of the present study was to assess changes in electroencephalogram (EEG) phase locking between fronto-parietal areas, including the frontal and parietal motor areas, during audiomotor learning of continuous tracking movements. Subjects learned to turn a steering wheel according to a given trajectory in order to minimise the discrepancy between a changing foreground stimulus (controllable by the subjects) and a constant background stimulus. The results of the present study show that increasing practice of continuous tracking movements that are continuously performed in the presence of auditory feedback is not accompanied by decrease in phase locking between areas involved. Moreover, the study confirms that internally produced movements show enhanced coherent activities compared to externally guided movements and therefore suggests that the motor-parietal network is more engaged during internally produced than externally produced movement

    A randomised controlled trial investigating motor skill training as a function of attentional focus in old age

    Get PDF
    BACKGROUND: Motor learning research has had little impact on clinical applications and rarely extended to research about how older adults learn motor skills. There is consistent evidence that motor skill performance and learning can be enhanced by giving learners instructions that direct their attention. The aim of this study was to test whether elderly individuals that receive an external focus instruction during training of dynamic balance skills would learn in a different manner compared to individuals that received an internal focus instruction. METHODS: This randomised trial included 26 older persons (81 +/- 6 years) that were training functional balance twice a week for the duration of 5 weeks. Learning outcomes were recorded after every training session. Weight shifting score and dynamic balance parameters (Biodex Balance System), components of the Extended Timed-Get-Up-and-Go test, five chair rises, and falls efficacy (FES-I) was assessed at baseline and post-intervention. RESULTS: Participation for training sessions was 94%. No differences between groups were found following 5 weeks of training for weight shifting score, dynamic balance index and dynamic balance time (p < 0.95, p = 0.16, p < 0.50), implying no learning differences between training groups. Extended Timed-Get-Up-and-Go components Sit-to-stand, p = .036; Gait initiation, p = .039; Slow down, stop, turnaround, and sit down, p = 0.011 and the Fes-I (p = 0.014) showed improvements for the total group, indicating that function improved compared to baseline. CONCLUSION: A 5-week balance training improved weight shifting scores and dynamic balance parameters as well as functional abilities. The observed improvements were independent from the type of attentional focus instructions. The findings provide support for the proposition of different motor learning principles in older adults compared to younger adults

    Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    Get PDF
    Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the effectiveness of cognitive or motor-cognitive interventions to improve physical functioning in older adults or people with neurological impairments is limited. The heterogeneity of the studies published so far does not allow defining the training methodology with the greatest effectiveness. This review nevertheless provides important foundational information in order to encourage further development of novel cognitive or cognitive-motor interventions, preferably with a randomized control design. Future research that aims to examine the relation between improvements in cognitive skills and the translation to better performance on selected physical tasks should explicitly take the relation between the cognitive and physical skills into account.ISSN:1471-231

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    1000 ejercicios y juegos de atletismo

    No full text

    A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial

    No full text
    Abstract Background Computer-based interventions have demonstrated consistent positive effects on various physical abilities in older adults. This study aims to compare two training groups that achieve similar amounts of strength and balance exercise where one group receives an intervention that includes additional dance video gaming. The aim is to investigate the different effects of the training programs on physical and psychological parameters in older adults. Methods Thirty-one participants (mean age ± SD: 86.2 ± 4.6 years), residents of two Swiss hostels for the aged, were randomly assigned to either the dance group (n = 15) or the control group (n = 16). The dance group absolved a twelve-week cognitive-motor exercise program twice weekly that comprised progressive strength and balance training supplemented with additional dance video gaming. The control group performed only the strength and balance exercises during this period. Outcome measures were foot placement accuracy, gait performance under single and dual task conditions, and falls efficacy. Results After the intervention between-group comparison revealed significant differences for gait velocity (U = 26, P = .041, r = .45) and for single support time (U = 24, P = .029, r = .48) during the fast walking dual task condition in favor of the dance group. No significant between-group differences were observed either in the foot placement accuracy test or in falls efficacy. Conclusions There was a significant interaction in favor of the dance video game group for improvements in step time. Significant improved fast walking performance under dual task conditions (velocity, double support time, step length) was observed for the dance video game group only. These findings suggest that in older adults a cognitive-motor intervention may result in more improved gait under dual task conditions in comparison to a traditional strength and balance exercise program. Trial registration This trial has been registered under ISRCTN05350123 (http://www.controlled-trials.com)</p

    The influence of gaze behaviour on postural control from early childhood into adulthood.

    No full text
    In the present study we aimed to track the influence of natural gaze behaviour on postural control from early childhood into adulthood. We measured time series of centre of pressure (COP) as well as head movement in three children groups aged around five (n = 16), eight (n = 15), and eleven (n = 14) and in one group of young adults (n = 15) during quiet stance with eyes closed, gaze fixed on a dot, and with gaze shifts between two dots. We adopted magnitude and irregularity of COP displacement as indexes of postural control and cross correlation between COP displacement and target oscillation as an index of the dynamical coupling between the postural and visual systems. Magnitude and irregularity of COP displacement decreased with age, which suggests a steady improvement of postural control from five to beyond eleven years of age. Cross correlations were weak and relative phases highly variable across age groups. Across conditions, and most prominently in the gaze shift conditions, 5-year-olds showed both more head movement and lower postural stability than other age groups. Finally, only in 5-year-olds did we find a marked deterioration of postural stability with gaze shifts. We thus conclude that excessive head movement, particularly during gaze shifts, may be a primary cause of lower postural stability in young children compared to older children and adults

    A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial

    Get PDF
    Background Computer-based interventions have demonstrated consistent positive effects on various physical abilities in older adults. This study aims to compare two training groups that achieve similar amounts of strength and balance exercise where one group receives an intervention that includes additional dance video gaming. The aim is to investigate the different effects of the training programs on physical and psychological parameters in older adults. Methods Thirty-one participants (mean age ± SD: 86.2 ± 4.6 years), residents of two Swiss hostels for the aged, were randomly assigned to either the dance group (n = 15) or the control group (n = 16). The dance group absolved a twelve-week cognitive-motor exercise program twice weekly that comprised progressive strength and balance training supplemented with additional dance video gaming. The control group performed only the strength and balance exercises during this period. Outcome measures were foot placement accuracy, gait performance under single and dual task conditions, and falls efficacy. Results After the intervention between-group comparison revealed significant differences for gait velocity (U = 26, P = .041, r = .45) and for single support time (U = 24, P = .029, r = .48) during the fast walking dual task condition in favor of the dance group. No significant between-group differences were observed either in the foot placement accuracy test or in falls efficacy. Conclusions There was a significant interaction in favor of the dance video game group for improvements in step time. Significant improved fast walking performance under dual task conditions (velocity, double support time, step length) was observed for the dance video game group only. These findings suggest that in older adults a cognitive-motor intervention may result in more improved gait under dual task conditions in comparison to a traditional strength and balance exercise program. Trial registration This trial has been registered under ISRCTN05350123 (http://www.controlled-trials.com)ISSN:1471-231
    corecore