12 research outputs found

    Spatial, temporal and molecular dynamics of swine influenza virus-specific CD8 tissue resident memory T cells

    Get PDF
    For the first time we have defined naĂŻve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models

    Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope

    Get PDF
    We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants

    Decoupling light harvesting, electron transport and carbon fixation during prolonged darkness supports rapid recovery upon re-illumination in the Arctic diatom Chaetoceros neogracilis

    No full text
    International audienceDuring winter in the Arctic marine ecosystem, diatoms have to survive long periods of darkness caused by low sun elevations and the presence of sea ice covered by snow. To better understand how diatoms survive in the dark, we subjected cultures of the Arctic diatom Chaetoceros neogracilis to a prolonged period of darkness (1 month) and to light resupply. Chaetoceros neogracilis was not able to grow in the dark but cell biovolume remained constant after 1 month in darkness. Rapid resumption of photosynthesis and growth recovery was also found when the cells were transferred back to light at four different light levels ranging from 5 to 154 ”mol photon m−2 s−1. This demonstrates the remarkable ability of this species to re-initiate growth over a wide range of irradiances even after a prolonged period in the dark with no apparent lag period or impact on survival. Such recovery was possible because C. neogracilis cells preserved their Chl a content and their light absorption capabilities. Carbon fixation capacity was down-regulated (ninefold dark decrease in PCm) much more than was the photochemistry in PSII (2.3-fold dark decrease in ETRm). Rubisco content, which remained unchanged after one month in the dark, was not responsible for the decrease in PCm. The decrease in PSII activity was partially related to the induction of sustained non-photochemical quenching (NPQ) as we observed an increase in diatoxanthin content after one month in the dark

    Intranasal Administration of Nanovectorized Docosahexaenoic Acid (DHA) Improves Cognitive Function in Two Complementary Mouse Models of Alzheimer’s Disease

    No full text
    International audiencePolyunsaturated fatty acids (PUFAs) are a class of fatty acids that are closely associated with the development and function of the brain. The most abundant PUFA is docosahexaenoic acid (DHA, 22:6 n-3). In humans, low plasmatic concentrations of DHA have been associated with impaired cognitive function, low hippocampal volumes, and increased amyloid deposition in the brain. Several studies have reported reduced brain DHA concentrations in Alzheimer’s disease (AD) patients’ brains. Although a number of epidemiological studies suggest that dietary DHA consumption may protect the elderly from developing cognitive impairment or dementia including AD, several review articles report an inconclusive association between omega-3 PUFAs intake and cognitive decline. The source of these inconsistencies might be because DHA is highly oxidizable and its accessibility to the brain is limited by the blood–brain barrier. Thus, there is a pressing need for new strategies to improve DHA brain supply. In the present study, we show for the first time that the intranasal administration of nanovectorized DHA reduces Tau phosphorylation and restores cognitive functions in two complementary murine models of AD. These results pave the way for the development of a new approach to target the brain with DHA for the prevention or treatment of this devastating disease

    Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope.

    Get PDF
    We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants

    Targeting of multiple tumor-associated antigens by individual t-cell receptors during successful cancer immunotherapy

    Get PDF
    The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such “multipronged” T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies
    corecore