94 research outputs found

    The Study of Law and India’s Society: The Galanter Factor

    Get PDF
    Moog pursues three related themes or lines of inquiry that have marked her own research, the roots of which are to be found in Marc Galanter\u27s earlier works and the broader law-and-society movement. These include, the significance of lower courts, the role of the local bar, and the evolution of alternatives to formal court proceedings all represent essential areas for exploration in the attempt to understand the successes and failures of the Indian justice system

    High frequency of chlamydial co-infections in clinically healthy sheep flocks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiological situation of ovine chlamydial infections in continental Europe, especially Germany is poorly characterised. Using the German state of Thuringia as a model example, the chlamydial sero- and antigen prevalence was estimated in thirty-two randomly selected sheep flocks with an average abortion rate lower than 1%. Seven vaccinated flocks were reviewed separately.</p> <p>Results</p> <p>A wide range of samples from 32 flocks were examined. Assumption of a seroprevalence of 10% (CI 95%) at flock level, revealed that 94% of the tested flocks were serologically positive with ongoing infection (i.e. animals with seroconversion) in nearly half (47%) of the flocks. On the basis of an estimated 25% antigen prevalence (CI 95%), PCR and DNA microarray testing, together with sequencing revealed the presence of chlamydiae in 78% of the flocks. The species most frequently found was <it>Chlamydophila (C</it>.) <it>abortus </it>(50%) followed by <it>C. pecorum </it>(47%) and <it>C. psittaci </it>genotype A (25%). Mixed infections occurred in 25% of the tested flocks. Samples obtained from the vaccinated flocks revealed the presence of <it>C. abortus </it>field samples in 4/7 flocks. <it>C. pecorum </it>was isolated from 2/7 flocks and the presence of seroconversion was determined in 3/7 flocks.</p> <p>Conclusions</p> <p>The results imply that chlamydial infections occur frequently in German sheep flocks, even in the absence of elevated abortion rates. The fact that <it>C. pecorum </it>and the potentially zoonotic <it>C. psittaci </it>were found alongside the classical abortifacient agent <it>C. abortus</it>, raise questions about the significance of this reservoir for animal and human health and underline the necessity for regular monitoring. Further studies are needed to identify the possible role of <it>C. psittaci </it>infections in sheep.</p

    Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Against HIV-1

    Get PDF
    It is now well-accepted that Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC), can contribute to vaccine-elicited protection as well as post-infection control of HIV viremia. This picture was derived using a wide array of ADCC assays, no two of which are strictly comparable, and none of which is qualified at the clinical laboratory level. An earlier comparative study of assay protocols showed that while data from different ADCC assay formats were often correlated, they remained distinct in terms of target cells and the epitopes and antigen(s) available for recognition by antibodies, the effector cells, and the readout of cytotoxicity. This initial study warrants expanded analyses of the relationships among all current assay formats to determine where they detect overlapping activities and where they do not. Here we summarize knowns and unknowns of assaying ADCC against HIV-1

    Mutations of AKT3 are associated with a wide spectrum of developmental disorders including extreme megalencephaly

    Get PDF
    Mutations of genes within the phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway are well known causes of brain overgrowth (megalencephaly) as well as segmental cortical dysplasia (such as hemimegalencephaly, focal cortical dysplasia and polymicrogyria). Mutations of the AKT3 gene have been reported in a few individuals with brain malformations, to date. Therefore, our understanding regarding the clinical and molecular spectrum associated with mutations of this critical gene is limited, with no clear genotype–phenotype correlations. We sought to further delineate this spectrum, study levels of mosaicism and identify genotype–phenotype correlations of AKT3-related disorders. We performed targeted sequencing of AKT3 on individuals with these phenotypes by molecular inversion probes and/or Sanger sequencing to determine the type and level of mosaicism of mutations. We analysed all clinical and brain imaging data of mutation-positive individuals including neuropathological analysis in one instance. We performed ex vivo kinase assays on AKT3 engineered with the patient mutations and examined the phospholipid binding profile of pleckstrin homology domain localizing mutations. We identified 14 new individuals with AKT3 mutations with several phenotypes dependent on the type of mutation and level of mosaicism. Our comprehensive clinical characterization, and review of all previously published patients, broadly segregates individuals with AKT3 mutations into two groups: patients with highly asymmetric cortical dysplasia caused by the common p.E17K mutation, and patients with constitutional AKT3 mutations exhibiting more variable phenotypes including bilateral cortical malformations, polymicrogyria, periventricular nodular heterotopia and diffuse megalencephaly without cortical dysplasia. All mutations increased kinase activity, and pleckstrin homology domain mutants exhibited enhanced phospholipid binding. Overall, our study shows that activating mutations of the critical AKT3 gene are associated with a wide spectrum of brain involvement ranging from focal or segmental brain malformations (such as hemimegalencephaly and polymicrogyria) predominantly due to mosaic AKT3 mutations, to diffuse bilateral cortical malformations, megalencephaly and heterotopia due to constitutional AKT3 mutations. We also provide the first detailed neuropathological examination of a child with extreme megalencephaly due to a constitutional AKT3 mutation. This child has one of the largest documented paediatric brain sizes, to our knowledge. Finally, our data show that constitutional AKT3 mutations are associated with megalencephaly, with or without autism, similar to PTEN-related disorders. Recognition of this broad clinical and molecular spectrum of AKT3 mutations is important for providing early diagnosis and appropriate management of affected individuals, and will facilitate targeted design of future human clinical trials using PI3K-AKT pathway inhibitors

    International Network for Comparison of HIV Neutralization Assays: The NeutNet Report

    Get PDF
    BACKGROUND: Neutralizing antibody assessments play a central role in human immunodeficiency virus type-1 (HIV-1) vaccine development but it is unclear which assay, or combination of assays, will provide reliable measures of correlates of protection. To address this, an international collaboration (NeutNet) involving 18 independent participants was organized to compare different assays. METHODS: Each laboratory evaluated four neutralizing reagents (TriMab, 447-52D, 4E10, sCD4) at a given range of concentrations against a panel of 11 viruses representing a wide range of genetic subtypes and phenotypes. A total of 16 different assays were compared. The assays utilized either uncloned virus produced in peripheral blood mononuclear cells (PBMCs) (virus infectivity assays, VI assays), or their Env-pseudotyped (gp160) derivatives produced in 293T cells (PSV assays) from molecular clones or uncloned virus. Target cells included PBMC and genetically-engineered cell lines in either a single- or multiple-cycle infection format. Infection was quantified by using a range of assay read-outs that included extracellular or intracellular p24 antigen detection, RNA quantification and luciferase and beta-galactosidase reporter gene expression. FINDINGS: PSV assays were generally more sensitive than VI assays, but there were important differences according to the virus and inhibitor used. For example, for TriMab, the mean IC50 was always lower in PSV than in VI assays. However, with 4E10 or sCD4 some viruses were neutralized with a lower IC50 in VI assays than in the PSV assays. Inter-laboratory concordance was slightly better for PSV than for VI assays with some viruses, but for other viruses agreement between laboratories was limited and depended on both the virus and the neutralizing reagent. CONCLUSIONS: The NeutNet project demonstrated clear differences in assay sensitivity that were dependent on both the neutralizing reagent and the virus. No single assay was capable of detecting the entire spectrum of neutralizing activities. Since it is not known which in vitro assay correlates with in vivo protection, a range of neutralization assays is recommended for vaccine evaluation

    Transient Antibody-Mucin Interactions Produce a Dynamic Molecular Shield against Viral Invasion

    Get PDF
    Given the difficulty in finding a cure for HIV/AIDS, a promising prevention strategy to reduce HIV transmission is to directly block infection at the portal of entry. The recent Thai RV144 trial offered the first evidence that an antibody-based vaccine may block heterosexual HIV transmission. Unfortunately, the underlying mechanism(s) for protection remain unclear. Here we theoretically examine a hypothesis that builds on our recent laboratory observation: virus-specific antibodies (Ab) can trap individual virions in cervicovaginal mucus (CVM), thereby reducing infection in vivo. Ab are known to have a weak—previously considered inconsequential—binding affinity with the mucin fibers that constitute CVM. However, multiple Ab can bind to the same virion at the same time, which markedly increases the overall Ab-mucin binding avidity, and creates an inheritable virion-mucin affinity. Our model takes into account biologically relevant length and timescales, while incorporating known HIV-Ab affinity and the respective diffusivities of viruses and Ab in semen and CVM. The model predicts that HIV-specific Ab in CVM leads to rapid formation and persistence of an HIV concentration front near the semen/CVM interface, far from the vaginal epithelium. Such an HIV concentration front minimizes the flux of HIV virions reaching target cells, and maximizes their elimination upon drainage of genital secretions. The robustness of the result implies that even exceedingly weak Ab-mucin affinity can markedly reduce the flux of virions reaching target cells. Beyond this specific application, the model developed here is adaptable to other pathogens, mucosal barriers, and geometries, as well as kinetic and diffusional effects, providing a tool for hypothesis testing and producing quantitative insights into the dynamics of immune-mediated protection

    Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques

    Get PDF
    HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses
    corecore