85 research outputs found

    Species mobility and landscape context determine the importance of local and landscape-level attributes

    Get PDF
    Conservation strategies to tackle habitat loss and fragmentation require actions at local (e.g. improving/expanding existing habitat patches) and landscape level (e.g. creating new habitat in the matrix). However, the relative importance of these actions for biodiversity is still poorly understood, leading to debate on how to prioritise conservation activities. Here, we assess the relative importance of local vs. landscape-level attributes in determining the use of woodlands by bats in fragmented landscapes; we also compare the role of habitat amount in the surrounding landscape per se vs. a combination of both habitat amount and configuration and explore whether the relative importance of these attributes varies with species mobility and landscape context. We conducted acoustic surveys in 102 woodland patches in the UK which form part of the WrEN project (www.wren-project.com), a large-scale natural experiment designed to study the effects of 160 years of woodland creation on biodiversity and inform landscape-scale conservation. We used multivariate analysis and a model-selection approach to assess the relative importance of local (e.g. vegetation structure) and landscape-level (e.g. amount/configuration of surrounding land types) attributes on bat occurrence and activity levels. Species mobility was an important trait determining the relative importance of local vs. landscape-level attributes for different bat species. Lower mobility species were most strongly influenced by local habitat quality; the landscape became increasingly important for higher mobility species. At the landscape-scale, a combination of habitat amount and configuration appeared more important than habitat amount alone for lower mobility species, whilst the opposite was observed for higher mobility species. Regardless of species mobility, landscape-level attributes appeared more important for bats in a more homogeneous and intensively farmed landscape. Conservation strategies involving habitat creation and restoration should take into account the mobility of target species and prioritise landscape-level actions in more homogeneous and intensively farmed landscapes where habitat loss and fragmentation have been more sever

    Pollination by the locally endangered island flying fox (Pteropus hypomelanus) enhances fruit production of the economically important durian (Durio zibethinus)

    Get PDF
    Fruit bats provide valuable pollination services to humans through a unique coevolutionary relationship with chiropterophilous plants. However, chiropterophily in the Old World and the pollination roles of large bats, such as flying foxes (Pteropus spp., Acerodon spp., Desmalopex spp.), are still poorly understood and require further elucidation. Efforts to protect these bats have been hampered by a lack of basic quantitative information on their role as ecosystem service providers. Here, we investigate the role of the locally endangered island flying fox Pteropus hypomelanus in the pollination ecology of durian (Durio zibethinus), an economically important crop in Southeast Asia.On Tioman Island, Peninsular Malaysia, we deployed 19 stations of paired infrared camera and video traps across varying heights at four individual flowering trees in a durian orchard. We detected at least nine species of animal visitors, but only bats had mutualistic interactions with durian flowers. There was a clear vertical stratification in the feeding niches of flying foxes and nectar bats, with flying foxes feeding at greater heights in the trees. Flying foxes had a positive effect on mature fruit set and therefore serve as important pollinators for durian trees. As such, semi-wild durian trees—particularly tall ones—may be dependent on flying foxes for enhancing reproductive success. Our study is the first to quantify the role of flying foxes in durian pollination, demonstrating that these giant fruit bats may have far more important ecological, evolutionary, and economic roles than previously thought. This has important implications and can aid efforts to promote flying fox conservation, especially in Southeast Asian countries

    Mutations in the 3'-untranslated region of GATA4 as molecular hotspots for congenital heart disease (CHD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 3'-untranslated region (3'-UTR) of mRNA contains regulatory elements that are essential for the appropriate expression of many genes. These regulatory elements are involved in the control of nuclear transport, polyadenylation status, subcellular targetting as well as rates of translation and degradation of mRNA. Indeed, 3'-UTR mutations have been associated with disease, but frequently this region is not analyzed. To gain insights into congenital heart disease (CHD), we have been analyzing cardiac-specific transcription factor genes, including <it>GATA4</it>, which encodes a zinc finger transcription factor. Germline mutations in the coding region of <it>GATA4 </it>have been associated with septation defects of the human heart, but mutations are rather rare. Previously, we identified 19 somatically-derived zinc finger mutations in diseased tissues of malformed hearts. We now continued our search in the 609 bp 3'-UTR region of <it>GATA4 </it>to explore further molecular avenues leading to CHD.</p> <p>Methods</p> <p>By direct sequencing, we analyzed the 3'-UTR of <it>GATA4 </it>in DNA isolated from 68 formalin-fixed explanted hearts with complex cardiac malformations encompassing ventricular, atrial, and atrioventricular septal defects. We also analyzed blood samples of 12 patients with CHD and 100 unrelated healthy individuals.</p> <p>Results</p> <p>We identified germline and somatic mutations in the 3'-UTR of <it>GATA4</it>. In the malformed hearts, we found nine frequently occurring sequence alterations and six dbSNPs in the 3'-UTR region of <it>GATA4</it>. Seven of these mutations are predicted to affect RNA folding. We also found further five nonsynonymous mutations in exons 6 and 7 of <it>GATA4</it>. Except for the dbSNPs, analysis of tissue distal to the septation defect failed to detect sequence variations in the same donor, thus suggesting somatic origin and mosaicism of mutations. In a family, we observed c.+119A > T in the 3'-UTR associated with ASD type II.</p> <p>Conclusion</p> <p>Our results suggest that somatic <it>GATA4 </it>mutations in the 3'-UTR may provide an additional molecular rationale for CHD.</p

    Qualitative Release Assessment to Estimate the Likelihood of Henipavirus Entering the United Kingdom

    Get PDF
    The genus Henipavirus includes Hendra virus (HeV) and Nipah virus (NiV), for which fruit bats (particularly those of the genus Pteropus) are considered to be the wildlife reservoir. The recognition of henipaviruses occurring across a wider geographic and host range suggests the possibility of the virus entering the United Kingdom (UK). To estimate the likelihood of henipaviruses entering the UK, a qualitative release assessment was undertaken. To facilitate the release assessment, the world was divided into four zones according to location of outbreaks of henipaviruses, isolation of henipaviruses, proximity to other countries where incidents of henipaviruses have occurred and the distribution of Pteropus spp. fruit bats. From this release assessment, the key findings are that the importation of fruit from Zone 1 and 2 and bat bushmeat from Zone 1 each have a Low annual probability of release of henipaviruses into the UK. Similarly, the importation of bat meat from Zone 2, horses and companion animals from Zone 1 and people travelling from Zone 1 and entering the UK was estimated to pose a Very Low probability of release. The annual probability of release for all other release routes was assessed to be Negligible. It is recommended that the release assessment be periodically re-assessed to reflect changes in knowledge and circumstances over time

    Annexin A2 Binds RNA and Reduces the Frameshifting Efficiency of Infectious Bronchitis Virus

    Get PDF
    Annexin A2 (ANXA2) is a protein implicated in diverse cellular functions, including exocytosis, DNA synthesis and cell proliferation. It was recently proposed to be involved in RNA metabolism because it was shown to associate with some cellular mRNA. Here, we identified ANXA2 as a RNA binding protein (RBP) that binds IBV (Infectious Bronchitis Virus) pseudoknot RNA. We first confirmed the binding of ANXA2 to IBV pseudoknot RNA by ultraviolet crosslinking and showed its binding to RNA pseudoknot with ANXA2 protein in vitro and in the cells. Since the RNA pseudoknot located in the frameshifting region of IBV was used as bait for cellular RBPs, we tested whether ANXA2 could regulate the frameshfting of IBV pseudoknot RNA by dual luciferase assay. Overexpression of ANXA2 significantly reduced the frameshifting efficiency from IBV pseudoknot RNA and knockdown of the protein strikingly increased the frameshifting efficiency. The results suggest that ANXA2 is a cellular RBP that can modulate the frameshifting efficiency of viral RNA, enabling it to act as an anti-viral cellular protein, and hinting at roles in RNA metabolism for other cellular mRNAs

    Bats host major mammalian paramyxoviruses

    Get PDF
    The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data

    Henipavirus RNA in African Bats

    Get PDF
    BACKGROUND: Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. METHODOLOGY/PRINCIPAL FINDINGS: Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. CONCLUSIONS/SIGNIFICANCE: The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans

    Diseases and Causes of Death in European Bats: Dynamics in Disease Susceptibility and Infection Rates

    Get PDF
    Bats receive increasing attention in infectious disease studies, because of their well recognized status as reservoir species for various infectious agents. This is even more important, as bats with their capability of long distance dispersal and complex social structures are unique in the way microbes could be spread by these mammalian species. Nevertheless, infection studies in bats are predominantly limited to the identification of specific pathogens presenting a potential health threat to humans. But the impact of infectious agents on the individual host and their importance on bat mortality is largely unknown and has been neglected in most studies published to date.) were collected in different geographic regions in Germany. Most animals represented individual cases that have been incidentally found close to roosting sites or near human habitation in urban and urban-like environments. The bat carcasses were subjected to a post-mortem examination and investigated histo-pathologically, bacteriologically and virologically. Trauma and disease represented the most important causes of death in these bats. Comparative analysis of pathological findings and microbiological results show that microbial agents indeed have an impact on bats succumbing to infectious diseases, with fatal bacterial, viral and parasitic infections found in at least 12% of the bats investigated.Our data demonstrate the importance of diseases and infectious agents as cause of death in European bat species. The clear seasonal and individual variations in disease prevalence and infection rates indicate that maternity colonies are more susceptible to infectious agents, underlining the possible important role of host physiology, immunity and roosting behavior as risk factors for infection of bats
    corecore