131 research outputs found

    Integrating climate security into policy frameworks: Jordan

    Get PDF
    The climate crisis is increasing security risks in Jordan. Of the manifold risks Jordan must contend with, most pressing are those with direct implications for water resources which are already under significant strain due to both climatic and human-induced factors. Higher temperatures are leading to more evapotranspiration and reduced rainfall are especially critical, straining the groundwater and aquifer reserves that are already over exploited. Extreme weather events and their impacts, including droughts, flash floods, and landslides, further complicate matters. These risks translate into important implications for Jordanians across a variety of areas, including political, social, demographic and economic realms, especially when combined with pre-existing grievances and especially poverty. This roadmap outlines a set of specific mechanisms and opportunities for the integration of climate, peace, and security considerations into policy and legislative frameworks in Jordan

    Climate, peace and security programming in the Arab States: Considerations for integrated programming in Jordan, Yemen, Iraq and Somalia

    Get PDF
    The link between climate change and peace and security is becoming increasingly evident as the world grapples with the consequences of a warming planet. Climate change exacerbates existing inequalities and conflicts, and acts as a catalyst for new ones, as competition for dwindling resources, such as water and land intensify. Rising sea levels and extreme weather events displace communities, straining host communities’ resources, leading to potential social unrest. Additionally, climate-induced food and water scarcity can speak conflict over access to these essential resources. Furthermore, climate change can amplify existing social and economic inequalities, which can contribute to instability and unrest. Understanding the climate, peace, and security linkages, and developing integrated policies and programmes across this nexus, is critical to ensuring global peace and security, and addressing humanitarian needs while supporting sustainable development. This brief - based on the outcomes of a stakeholder workshop held in Cairo in March 2023 - outlines several best practices and lessons learned for the design, implementation, and evaluation of integrated programming that builds resilience to both climate change and security risks

    Mineralocorticoid receptor antagonist pretreatment to MINIMISE reperfusion injury after ST-elevation myocardial infarction (the MINIMISE STEMI Trial): rationale and study design.

    Get PDF
    Novel therapies capable of reducing myocardial infarct (MI) size when administered prior to reperfusion are required to prevent the onset of heart failure in ST-segment elevation myocardial infarction (STEMI) patients treated by primary percutaneous coronary intervention (PPCI). Experimental animal studies have demonstrated that mineralocorticoid receptor antagonist (MRA) therapy administered prior to reperfusion can reduce MI size, and MRA therapy prevents adverse left ventricular (LV) remodeling in post-MI patients with LV impairment. With these 2 benefits in mind, we hypothesize that initiating MRA therapy prior to PPCI, followed by 3 months of oral MRA therapy, will reduce MI size and prevent adverse LV remodeling in STEMI patients. The MINIMISE-STEMI trial is a prospective, randomized, double-blind, placebo-controlled trial that will recruit 150 STEMI patients from four centers in the United Kingdom. Patients will be randomized to receive either an intravenous bolus of MRA therapy (potassium canrenoate 200 mg) or matching placebo prior to PPCI, followed by oral spironolactone 50 mg once daily or matching placebo for 3 months. A cardiac magnetic resonance imaging scan will be performed within 1 week of PPCI and repeated at 3 months to assess MI size and LV remodeling. Enzymatic MI size will be estimated by the 48-hour area-under-the-curve serum cardiac enzymes. The primary endpoint of the study will be MI size on the 3-month cardiac magnetic resonance imaging scan. The MINIMISE STEMI trial will investigate whether early MRA therapy, initiated prior to reperfusion, can reduce MI size and prevent adverse post-MI LV remodeling.This research study was funded by the Rosetrees Trust, our local research networks, and the National Institute for Health Research University College London Hospitals Biomedical Research Centre (for a list of key study participants and committee members, see Supporting Information, Appendix, in the online version of this article). G.M.F. was supported by a research grant of the Swiss National Foundation and the SSMBS (Schweizerische Stiftung fur Medizinische und Biologische Stipendien). D.J.H. is supported by a BHF Senior Clinical Research ¨ Fellowship (FS/10/039/28270)

    Combining Sanford arylations on benzodiazepines with the nuisance effect

    Get PDF
    5-Phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-ones react under palladium- and visible light photoredox catalysis, in refluxing methanol, with aryldiazonium salts to afford the respective 5-(2- arylphenyl) analogues. With 2- or 4-fluorobenzenediazonium derivatives, both fluoroaryl- and methoxyaryl- products were obtained, the latter resulting from a SNAr on the fluorobenzenediazonium salt (“nuisance effect”). A computational DFT analysis of the palladium-catalysed and the palladium/ruthenium-photocalysed mechanism for the functionalization of benzodiazepines indicated that in the presence of the photocatalyst the reaction proceeds via a low-energy SET pathway avoiding the high-energy oxidative addition step in the palladium-only catalysed reaction pathway

    Moving word learning to a novel space: A dynamic systems view of referent selection and retention

    Get PDF
    Theories of cognitive development must address both the issue of how children bring their knowledge to bear on behavior in-the-moment, and how knowledge changes over time. We argue that seeking answers to these questions requires an appreciation of the dynamic nature of the developing system in its full, reciprocal complexity. We illustrate this dynamic complexity with results from two lines of research on early word learning. The first demonstrates how the child’s active engagement with objects and people supports referent selection via memories for what objects were previously seen in a cued location. The second set of results highlights changes in the role of novelty and attentional processes in referent selection and retention as children’s knowledge of words and objects grows. Together this work suggests understanding systems for perception, action, attention, and memory and their complex interaction is critical to understand word learning. We review recent literature that highlights the complex interactions between these processes in cognitive development and point to critical issues for future work

    Grounding Word Learning in Space

    Get PDF
    Humans and objects, and thus social interactions about objects, exist within space. Words direct listeners' attention to specific regions of space. Thus, a strong correspondence exists between where one looks, one's bodily orientation, and what one sees. This leads to further correspondence with what one remembers. Here, we present data suggesting that children use associations between space and objects and space and words to link words and objects—space binds labels to their referents. We tested this claim in four experiments, showing that the spatial consistency of where objects are presented affects children's word learning. Next, we demonstrate that a process model that grounds word learning in the known neural dynamics of spatial attention, spatial memory, and associative learning can capture the suite of results reported here. This model also predicts that space is special, a prediction supported in a fifth experiment that shows children do not use color as a cue to bind words and objects. In a final experiment, we ask whether spatial consistency affects word learning in naturalistic word learning contexts. Children of parents who spontaneously keep objects in a consistent spatial location during naming interactions learn words more effectively. Together, the model and data show that space is a powerful tool that can effectively ground word learning in social contexts

    Multiple M. tuberculosis Phenotypes in Mouse and Guinea Pig Lung Tissue Revealed by a Dual-Staining Approach

    Get PDF
    A unique hallmark of tuberculosis is the granulomatous lesions formed in the lung. Granulomas can be heterogeneous in nature and can develop a necrotic, hypoxic core which is surrounded by an acellular, fibrotic rim. Studying bacilli in this in vivo microenvironment is problematic as Mycobacterium tuberculosis can change its phenotype and also become acid-fast negative. Under in vitro models of differing environments, M. tuberculosis alters its metabolism, transcriptional profile and rate of replication. In this study, we investigated whether these phenotypic adaptations of M. tuberculosis are unique for certain environmental conditions and if they could therefore be used as differential markers. Bacilli were studied using fluorescent acid-fast auramine-rhodamine targeting the mycolic acid containing cell wall, and immunofluorescence targeting bacterial proteins using an anti-M. tuberculosis whole cell lysate polyclonal antibody. These techniques were combined and simultaneously applied to M. tuberculosis in vitro culture samples and to lung sections of M. tuberculosis infected mice and guinea pigs. Two phenotypically different subpopulations of M. tuberculosis were found in stationary culture whilst three subpopulations were found in hypoxic culture and in lung sections. Bacilli were either exclusively acid-fast positive, exclusively immunofluorescent positive or acid-fast and immunofluorescent positive. These results suggest that M. tuberculosis exists as multiple populations in most conditions, even within seemingly a single microenvironment. This is relevant information for approaches that study bacillary characteristics in pooled samples (using lipidomics and proteomics) as well as in M. tuberculosis drug development

    Tolerance of sponge assemblages to temperature anomalies: resilience and proliferation of sponges following the 1997-8 El-Niño southern oscillation.

    Get PDF
    Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997-8 El-Niño Southern Oscillation (ENSO) had notable and severe impacts on coral reefs worldwide, but not all reef organisms were negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the 1997-8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks) at four sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant difference in sponge assemblage composition (ANOSIM) between pre- and post-ENSO years for any of the habitats, suggesting that neither the 1997-8 nor any subsequent smaller ENSO events have had any measurable impact on the reef sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa (including corals, echinoderms, bryozoans, and ascidians), which all suffered mass mortalities as a result of the ENSO event. Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other major groups of reef organisms
    corecore