71 research outputs found

    Nested Scales of Spatial and Temporal Variability of Soil Water Content Across a Semiarid Montane Catchment

    Get PDF
    Topographic redistribution of water has been represented by various terrain metrics (e.g., topographic wetness index, slope, and upslope accumulated area). This type of landscape characterization has promoted the use of terrain metrics to inform how spatial patterns of soil volumetric water content (VWC) influence streamflow, ecological processes, and associated nutrient fluxes. However, evaluation of what these static terrain metrics reflect has only been accomplished in a few catchments. Additionally, previous research suggests that relationships between topographic metrics and VWC could be different across catchments through time. Here we measured VWC from snowmelt through summer drydown across a semiarid montane catchment. Using a spatially nested sampling design, we assessed the spatiotemporal variability of VWC from plot (tens of meters) to landscape scales (hundreds of meters). Variance of riparian area VWC increased as the catchment dried, while upland variance decreased, highlighting the utility of delineating distinct landscape units when considering spatial variability of moisture, rather than calculating statistics across the landscape as a whole. In contrast to previous research, we found that the relationship between VWC and topographic metrics persisted through the dry catchment state, suggesting that patterns of topographic redistribution of water during snowmelt continued to influence dry season VWC despite variability in plot scale vertical processes (e.g., evapotranspiration). Future research should focus on resolving the relationship between catchment moisture state and VWC variability as a function of wetness state, seasonality, and magnitude of precipitation, topography, and soil depth

    Landscape Analysis of Soil Methane Flux Across Complex Terrain

    Get PDF
    Relationships between methane (CH4) fluxes and environmental conditions have been extensively explored in saturated soils, while research has been less prevalent in aerated soils because of the relatively small magnitudes of CH4 fluxes that occur in dry soils. Our study builds on previous carbon cycle research at Tenderfoot Creek Experimental Forest, Montana, to identify how environmental conditions reflected by topographic metrics can be leveraged to estimate watershed scale CH4 fluxes from point scale measurements. Here, we measured soil CH4 concentrations and fluxes across a range of landscape positions (7 riparian, 25 upland), utilizing topographic and seasonal (29 May–12 September) gradients to examine the relationships between environmental variables, hydrologic dynamics, and CH4 emission and uptake. Riparian areas emitted small fluxes of CH4 throughout the study (median: 0.186 µg CH4–C m−2 h−1) and uplands increased in sink strength with dry-down of the watershed (median: −22.9 µg CH4–C m−2 h−1). Locations with volumetric water content (VWC) below 38 % were methane sinks, and uptake increased with decreasing VWC. Above 43 % VWC, net CH4 efflux occurred, and at intermediate VWC net fluxes were near zero. Riparian sites had near-neutral cumulative seasonal flux, and cumulative uptake of CH4 in the uplands was significantly related to topographic indices. These relationships were used to model the net seasonal CH4 flux of the upper Stringer Creek watershed (−1.75 kg CH4–C ha−1). This spatially distributed estimate was 111 % larger than that obtained by simply extrapolating the mean CH4 flux to the entire watershed area. Our results highlight the importance of quantifying the space–time variability of net CH4 fluxes as predicted by the frequency distribution of landscape positions when assessing watershed scale greenhouse gas balances

    Variability in soil respiration across riparian-hillslope transitions

    Get PDF
    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as outstanding gaps in our understanding of carbon cycling. We investigated both across two riparian-hillslope transitions in a subalpine catchment, northern Rocky Mountains, Montana. Riparian-hillslope transitions provide ideal locations for investigating the controls on soil CO2 dynamics due to strong, natural gradients in the factors driving respiration, including soil water content (SWC) and soil temperature. We measured soil air CO2 concentrations (20 and 50 cm), surface CO2 efflux, soil temperature, and SWC at eight locations. We investigated (1) how soil CO2 concentrations differed within and between landscape positions; (2) how the timing of peak soil CO2 concentrations varied across riparian and hillslope zones; and (3) whether higher soil CO2 concentrations necessarily resulted in higher efflux (i.e. did surface CO2 efflux follow patterns of subsurface CO2)? Soil CO2 concentrations were significantly higher in the riparian zones, likely due to higher SWC. The timing of peak soil CO2 concentrations also differed between riparian and hillslope zones, with highest hillslope concentrations near peak snowmelt and highest riparian concentrations during the late summer and early fall. Surface CO2 efflux was relatively homogeneous at monthly timescales as a result of different combinations of soil CO2 production and transport, which led to equifinality in efflux across the transects. However, efflux was 57% higher in the riparian zones when integrated to cumulative growing season efflux, and suggests higher riparian soil CO2 production

    A software tool to assess uncertainty in transient storage model parameters using Monte Carlo simulations

    Get PDF
    Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    An organizational framework and strategic implementation for system-level change to enhance research-based practice: QUERI Series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The continuing gap between available evidence and current practice in health care reinforces the need for more effective solutions, in particular related to organizational context. Considerable advances have been made within the U.S. Veterans Health Administration (VA) in systematically implementing evidence into practice. These advances have been achieved through a system-level program focused on collaboration and partnerships among policy makers, clinicians, and researchers.</p> <p>The Quality Enhancement Research Initiative (QUERI) was created to generate research-driven initiatives that directly enhance health care quality within the VA and, simultaneously, contribute to the field of implementation science. This paradigm-shifting effort provided a natural laboratory for exploring organizational change processes. This article describes the underlying change framework and implementation strategy used to operationalize QUERI.</p> <p>Strategic approach to organizational change</p> <p>QUERI used an evidence-based organizational framework focused on three contextual elements: 1) cultural norms and values, in this case related to the role of health services researchers in evidence-based quality improvement; 2) capacity, in this case among researchers and key partners to engage in implementation research; 3) and supportive infrastructures to reinforce expectations for change and to sustain new behaviors as part of the norm. As part of a QUERI Series in <it>Implementation Science</it>, this article describes the framework's application in an innovative integration of health services research, policy, and clinical care delivery.</p> <p>Conclusion</p> <p>QUERI's experience and success provide a case study in organizational change. It demonstrates that progress requires a strategic, systems-based effort. QUERI's evidence-based initiative involved a deliberate cultural shift, requiring ongoing commitment in multiple forms and at multiple levels. VA's commitment to QUERI came in the form of visionary leadership, targeted allocation of resources, infrastructure refinements, innovative peer review and study methods, and direct involvement of key stakeholders. Stakeholders included both those providing and managing clinical care, as well as those producing relevant evidence within the health care system. The organizational framework and related implementation interventions used to achieve contextual change resulted in engaged investigators and enhanced uptake of research knowledge. QUERI's approach and progress provide working hypotheses for others pursuing similar system-wide efforts to routinely achieve evidence-based care.</p

    Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease

    Get PDF
    BACKGROUND: Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. METHODOLOGY/PRINCIPAL FINDINGS: We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. CONCLUSIONS/SIGNIFICANCE: Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases

    Neuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIB

    Get PDF
    Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events
    • …
    corecore