CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research article
Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease
Authors
Brian W. Bigger
Jillian R. Brown
+10 more
Brett E. Crawford
J. Ed Wraith
Grzegorz Grynkiewicz
Alex Langford-Smith
Kia J. Langford-Smith
Marcelina Malinowska
Marie T. Vanier
Grzegorz Wegrzyn
Fiona L. Wilkinson
Rob F. Wynn
Publication date
1 January 2010
Publisher
Doi
Cite
View
on
PubMed
Abstract
Background: Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. Methodology/Principal Findings: We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. Conclusions/Significance: Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases. © 2010 Malinowska et al
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
The University of Manchester - Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pure.atira.dk:openaire_cri...
Last time updated on 09/10/2025
Supporting member
E-space: Manchester Metropolitan University's Research Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:e-space.mmu.ac.uk:608834
Last time updated on 02/01/2019
The University of Manchester - Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pure.atira.dk:publications...
Last time updated on 01/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.pon...
Last time updated on 05/06/2019
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:bf2a9870d...
Last time updated on 13/10/2017