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Abstract: Researchers and practitioners alike often need to understand and characterize how water and solutes
move through a stream in terms of the relative importance of in-stream and near-stream storage and transport pro-
cesses. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure.
Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained
solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical
parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed
until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM pa-
rameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to in-
terpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter cer-
tainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS)
model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visu-
alize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our
results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting
best practices for transient-storagemodeling and recommend that future applications of TSMs include assessments
of parameter certainty to support comparisons and more reliable interpretations of transport processes.
Key words: solute transport, inverse modeling, tracer, transient storage, hyporheic zone, parameter estimation,
OTIS, MCAT, OTIS-MCAT
Ecologists, hydrologists, and practitioners who study or
manage stream and river networks need to quantify the rel-
ative importance of in- and near-stream processes for the
purposes of understanding the fate and transport of solutes
(e.g., nutrient spiraling and contaminant transport). Nu-
merous experimental methods have been used to charac-
terize these processes (Kalbus et al. 2006, Rosenberry and
LaBaugh 2008, González-Pinzón et al. 2015, Harvey and
Gooseff 2015), but a common approach is to assess charac-
teristics of the temporary storage of water and solutes in
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the stream (i.e., transient storage) via comparison of solute
transport model predictions with solute data from tracer
tests conducted along stream reaches. Transient-storage
modeling has long been applied to understand the fate and
transport of solutes in streams and to characterize the rela-
tive magnitude of short-term water storage in the stream
channel (e.g., eddies or pools) or in the subsurface near the
stream (e.g., the hyporheic zone) (Thackston and Schnelle
1970, Bencala andWalters 1983). Values for parameters de-
fined by the transient-storage model (TSM) formulation
rological.com; 14thorsten.wagener@bristol.ac.uk; 15n.mcintyre@uq.edu.au;
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provide one tool for comparing fundamental solute trans-
port characteristics within or among different streams.
These parameter values usually are estimated via inverse
modeling, with the goal to find a set of parameters that pro-
duces the ‘best fit’ between model predictions and ex-
perimentally obtained tracer concentration breakthrough
curves (i.e., a time series of tracer concentrations at the
downstream end of a study reach). These inferred parame-
ter values are then applied to predictive modeling of stream
solute transport in engineering pursuits or as comparative
indices of stream hydraulics in scientific pursuits.

Several implementations of theTSMexist (e.g., Beer et al.
1983,YoungandWallis1993,CamachoandGonzález2008),
but the One Dimensional Transport with Inflow and Stor-
age (OTIS) model (Runkel 1998) is a commonly applied
andopen-source computer program that has beenused pro-
lifically in studies of streams around the world. The OTIS
model features a built-in nonlinear regression algorithm
known asOTIS-P that uses inversemodeling to estimate pa-
rametervalues andcorrespondingconfidence intervals (CIs)
based on typical statistical assumptions regarding the dis-
tribution and variance of model residuals. Parameter esti-
mates are obtained via an iterative search of the parameter
space that converges when there is either a minimal change
inparametervaluesormodelperformance.Uncertainty esti-
mates are calculated in the neighborhood of the solution
(Runkel et al. 1998). Obtaining field experimental data for
this approach is inexpensive for smaller streams, and com-
pleting a successful solute tracer study requires minimal ex-
pertise (Stream Solute Workshop 1990, Runkel 2015). Fur-
thermore, OTIS-P software enables parameter estimation
with limited specialized knowledge in numerical modeling
or inferential statistics. As such, this approach is particularly
useful for obtaining a 1st-order understanding of stream hy-
draulics and transport in the context of transient storage.

Despite the relative ease of the combined tracer test–
OTIS-P approach, many investigators have concluded that
particular data sets and stream conditions may yield sub-
stantial uncertainty in the inferred values of transient-
storage parameters (Wagner and Gorelick 1986, Wagner
and Harvey 1997, Wagener et al. 2002, Kelleher et al. 2013,
Mueller Price et al. 2015). The limited power of transient-
storage parameter estimates can be problematic because
even the most basic statistical methods would emphasize
that useful results from inverse modeling require an objec-
tive and rigorous consideration of uncertainty in parameter
estimates. Optimization algorithms are powerful tools for
arriving at a single set of parameter values for a given exper-
iment, but we argue that reporting their uncertainty respon-
sibly is paramount to meaningful interpretation and com-
parisons. Here, we present the OTISMonte-Carlo Analysis
Toolbox (OTIS-MCAT), a modeling toolbox that will allow
users to gain a more robust understanding of uncertainty in
parameterestimates fortheOTISmodel,whichmaycontrib-
This content downloaded from 137.222
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ute to a more robust representation of uncertainty in values
of OTIS parameters reported in hydrologic literature.

Numerous investigators have provided evaluations of the
uncertainty associated with characterizations of stream hy-
draulics based on inference from TSMs. Researchers now
recognize that some parameters generally can be inferred
with relatively high confidence and have some idea of spe-
cific conditions or experiment types that are likely to pro-
vide more or less confidence in estimates of more dubious
parameters. For example, values for the cross-sectional area
of the channel (A, [L2]) can nearly always be inferred with
high confidence because this parameter is the primary con-
trol on the average advective transport time that is readily
and uniquely identifiable in the breakthrough curve (e.g.,
Stream Solute Workshop 1990, Wagener et al. 2002). Esti-
mates of other hydraulic parameters are less reliable for a
given experiment or stream condition. In particular, esti-
mating values for parameters describing the extent of tran-
sient storage (characterized as cross-sectional area AS, [L

2])
and the fractional rate of exchange between the channel and
transient-storage zone (a, [1/T]) can be problematic (Wa-
gener et al. 2002). This lack of confidence is unfortunate be-
cause these parameters are of particular interest for charac-
terizing the potential for streams to alter the fate of solutes.
This characterization, in turn, informs the role of streamhy-
draulics in controlling stream water or habitat quality. Fur-
thermore, certainty in parameter estimation may fluctuate
for multiple reasons across different stream reaches (e.g.,
Kelleher et al. 2013). This fluctuation implies that flow state,
geomorphology, and reach length (e.g., Wagner andHarvey
1997) may influence our ability to extract parameter esti-
mates with meaningful confidence. Here, we provide ex-
ample applications of the OTIS-MCAT tools to previously
published data sets to illustrate howmultiple approaches to
uncertainty estimation can lead to a more robust interpre-
tation of transient-storage parameters.

Our 1st objective is to present OTIS-MCAT to the users
of TSMs as a means to quantify parameter certainty for any
transient-storage experiment. The toolbox was created by
integrating OTIS with the MCAT (Wagener and Kollat
2007), which allows users to evaluate parameter uncertainty
and sensitivity graphically. The analysis framework from
OTIS-MCATissimilar togeneralized likelihooduncertainty
analysis (BevenandBinley1992).Output fromOTIS-MCAT
aids users in deciding whether parameter estimates allow
for meaningful conclusions about a given stream reach or
experiment. The software developed for our study is avail-
able for download from https://github.com/WardHydroLab
/OTIS-MCAT.git, and runs in the Matlab (Mathworks, Na-
tick, Massachusetts) computing language. Our 2nd objective
is to use 2 well-studied data sets to illustrate how the new
toolbox complements information provided by OTIS-P
and to demonstrate the value of using OTIS-MCAT with
OTIS-P.
.138.047 on February 07, 2017 02:09:10 AM
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METHODS
OTIS

All solute-transport simulations for our study were done
with the OTIS and OTIS-P models (Runkel 1998). The
OTIS model predicts a time series of solute concentrations
(breakthrough curve) for a given parameterization at dis-
tances downstream from user-supplied upstream boundary
conditions for solute andflow. TheOTIS-P implementation
contains an inverse modeling feature that estimates pa-
rameter values producing a predicted downstream break-
through curve that best matches an observed breakthrough
curve (e.g., from a tracer-release experiment). OTIS uses a
Crank–Nicolson numerical scheme to solve the following
equations for a conservative solute:
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where t is time (T), x is the longitudinal distance along the
stream (L), Q is the stream discharge (L3/T), A is the cross-
sectional area of the stream channel (L2), As is the cross-
sectional area of the transient-storage volume (L2), D
is the longitudinal dispersion coefficient (L2/T), a is the
transient-storage exchange rate (1/T), qLin is the rate of
lateral inflow to the channel per unit length along the
stream (L2/T), C is the stream concentration (M/L3), Cs is
the transient-storage zone concentration (M/L3), and CLin

is the solute concentration in the lateral inflow (M/L3).
Model parametersA,D,AS, and a are estimated to compare
the advective (A ), dispersive (D), or storage-related (AS, a)
hydraulic characteristics of study reaches.

The model also parameterizes lateral outflows (qLout;
L2/T), which are used to calculate themass balance of water
embedded in the derivation of Eq. 1 (Runkel and Chapra
1994). The model equations and OTIS simulations may be
extended for solutes that are not conservative, such as those
that are reactive in the system or sorptive to streambed sed-
iments. Runkel (1998) provided a full derivation and details
on the numerical solution scheme, andBencala andWalters
(1983) described key assumptions of model applications to
stream–hyporheic systems.

Parameter certainty
The goal of most transient-storage modeling exercises

is to infer parametric information about stream hydraulics.
However, appropriatelycharacterizingorcomparingstream
reaches based on estimated parameter values requires an
acceptable level of confidence in theparameter values them-
This content downloaded from 137.222
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selves. Potential for uncertainty in parameter estimates ob-
tained fromOTISmodel inversions has been demonstrated
thoroughly in many examples (Wagner and Harvey 1997).
Nevertheless, the certainty in inferred OTIS parameters is
reported infrequently.

We explored parameter uncertainty with the OTIS-
MCATtool,whichenables aMonte-Carlo-based evaluation
of the parameter space. For nonlinearmodels, such as OTIS,
assessing certainty in parameter estimates requires running
a model with multiple parameter combinations perhaps as
many as thousands of times. Within OTIS-MCAT, this ex-
ploration is completed via Monte-Carlo analysis, in which
all parameters are varied randomly across user-defined
ranges to produce many parameter sets. After the model is
run for all parameter sets, objective functions, which com-
pare how well (or poorly) model simulations match the
observed breakthrough curve, are calculated for each pa-
rameter set generated via Monte Carlo sampling. When
all parameters are varied together, many simulations ap-
proximate observations well andmany simulations approx-
imate observations poorly. Our analysis focuses on a ‘best’
set of runs, which we call ‘behavioral’, because the goal of
such an analysis is to explore parameter certainty in the con-
text of fitting the observed breakthrough curve. Behavioral
runs are those regarded as consistent with observed behav-
ior and represent the model simulations that most closely
match the observed breakthrough curve.Within this frame-
work, one can explore and assess parameter certainty vs
uncertainty by visually evaluating relationships between
parameter values and model performance for behavioral
model runs. A simple approach to delineating behavioral
simulations is to select a threshold in the objective function
based on a percentile of the ensemble of simulated break-
through curves that are considered viable descriptions of
the field observations (e.g., the top 10% of objective function
values; red or gray points in Fig. 1A, B). Iterative Monte-
Carlo approaches are a feasible method for exploring po-
tential sources of uncertainty in OTIS parameter estimates
because the OTIS model has short run times and relatively
few parameters.

We present 2 general examples in Fig. 1A, B to demon-
strate how parameter certainty vs uncertaintymaymanifest
in relationships between model performance and parame-
ter values across behavioral model runs. One likely source
of parameter uncertainty in model inversions is parameter
insensitivity. An assessment of parameter sensitivity can be
equated colloquially to answering the question “how much
does model performance change if I change the value of a
parameter?”. The impact of sensitivity on model perfor-
mance typically is quantified by changes in objective func-
tion values when the model is subjected to perturbations
in parameter values. In OTIS-MCAT, parameter sensitivity
can be assessed by using dotty plots (Fig. 1A, B) that display
the relationship between objective functions and corre-
.138.047 on February 07, 2017 02:09:10 AM
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sponding parameter values across the entire Monte-Carlo
ensemble. If model performance differs substantially across
the ensemble of parameter values, one would say a param-
eter is sensitive within that defined range of values (Fig. 1A).
An insensitive parameter has little effect on model perfor-
mance over a given range of values (Fig. 1B). In general, es-
timates aremore likely to be certain for sensitive parameters
in a model inversion analysis.

We expect that parameter values that accurately simu-
late the observed breakthrough curves shouldbe similar and
concentrated in a narrow portion of the parameter space.
Thus, certainty also may be inferred from the distribution
of parameter values that produce behavioral model simula-
tions, with confidence in estimates based on the behavioral
parameter ensemble visualized as a probability density func-
tion over the sampling range of each parameter. If the range
of behavioral values is peaked and narrow when compared
to the sampling range, the estimated parameter has higher
certainty (Fig. 1C) than if the range of behavioral values is
flat and nearly as wide as the sampling range (Fig. 1D).
These values can be translated into CIs based on descriptive
statistics of the behavioral ensemble (e.g., percentiles or
standard deviations) that should be reported with the best
parameter values.

OTIS-P is an alternative but complementary approach
to a Monte-Carlo analysis that produces a best set of pa-
rameter estimates, associated standard deviations of param-
eter estimates, and ∼95% confidence limits. To calculate
This content downloaded from 137.222
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these outputs,OTIS-Puses an iterativenonlinear regression
scheme to search the parameter space for a set of parame-
ters that minimizes the residual sum of squared errors (RSS)
between the observed and simulated downstream break-
through curves. This parameter estimation scheme was im-
plemented in the OTIS-P software by iterating OTIS model
runs within a nonlinear least-squares algorithm described
by Dennis et al. (1981) and executed within the Standards
Time Series and Regression Package (STARPAC) (Donald-
sonandTryon1990).Updates toparameter estimateswithin
the iterative framework are based on numerically approxi-
matedpartial derivatives of parameter values fromtheprevi-
ous iteration and the 2nd-order terms (Hessian) for the RSS.
Changes to parameter estimates from one iteration to the
next must not exceed an adaptively selected trust region
diameter, which defines the scale for reliability for local
model approximation (Donaldson and Tryon 1990). The
algorithm converges on a final set of parameter estimates
basedonuser-definedcriteria that either specifies aminimal
change in parameter value or objective function value rela-
tive to output from the previous iteration. Uncertainty esti-
mates forOTIS-P are calculated based on a linear numerical
approximation of the variance–covariance matrix within a
local neighborhoodof the solution, a key difference between
OTIS-P and OTIS-MCAT. Whether or not this linear ap-
proximation within a neighborhood of the solution is a rea-
sonable assumption for estimating parameter certainty de-
pends on the nonlinearity of the model (Donaldson and
Tryon 1990). Users may also opt to estimate all model pa-
rameters (A, D, AS, and a), or to fix parameter values that
are considered to be reliable estimates. A complete descrip-
tion of OTIS-P features was published by Runkel (1998).

Like similar single-point optimization schemes, this ap-
proach may be sensitive to where it is initialized in the pa-
rameter space (Hill andTiedeman 2007). For robust param-
eter estimates, OTIS-P optimization should be executed
from different initial parameter estimates to ensure that
the algorithm converges to the same final set of parameter
values. Beyond initializing OTIS-P from different parts of
the parameter space, Runkel (1998) also recommended exe-
cutingOTIS-Pmultiple timesandusingfinal estimates from
the previous execution as initial estimates for the next. For
some scenarios, often when data quality is too low to esti-
mate all parameters or when parameter effects cannot be
separated,OTIS-Pmaynot converge on afinal set of param-
eter estimates. However, completion without error gener-
ally is considered indicative of reliable parameter estimates.

Results from OTIS-P provide a best-fit parameter value
and a 95%CI, but optimizations like OTIS-P providemore-
localized information about parameter uncertainty than do
Monte-Carlo-based uncertainty analyses. The uncertainty
ranges reported by OTIS-P provide valuable information
about uncertainty in the local vicinity of the optimized pa-
rameter values but may not always provide generalized in-
Figure 1. Conceptual illustrations of sensitive and insensitive
(A, B) and certain and uncertain (C, D) parameters. Sensitivity
is visualized as a relationship between parameter values and
corresponding objective functions, where each point corre-
sponds to a different value from a parameter set. The ‘best’ set
of runs are termed ‘behavioral’. See text for an explanation of
sensitivity and certainty.
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formation about parameter sensitivity and certainty across
the orders of magnitude that OTIS model parameter val-
ues can span. Thus, researchers need to place OTIS-P
estimates and their associated certainty into a context that
enables abroaderMonte-Carlo-basedassessmentofparam-
eter sensitivity and certainty by using OTIS-MCAT and
OTIS-P in tandem. Addressing this need and paring the
output from these 2 tools should ultimately enable more-
thoughtful use of the OTIS model to characterize stream
transport characteristics by taking into account both un-
certainty bounds reported by OTIS-P and broader investi-
gation of parameter sensitivity and certainty for tracer-test
experiments. The general considerations about parameter
uncertainty that we present are not unique to OTIS and
tracer experiments, but are applicable in any effort to infer
system properties from nonlinear model inversions based
on observed data. As discussed in the following sections,
our toolbox introduces several visualizations that allow re-
searchers to assess parameter certainty and sensitivity.
These plots inform users about which values are appropri-
ate for characterizing a given stream and inform compari-
sons between solute-tracer experiments.
OTIS-MCAT
The workflow for modeling and analysis software de-

tailed in the following material is summarized in a Quick
Start manual provided with themodel code on the software
GitHub site. Subsequent sections detail the implementa-
tion of theMonte-Carlo simulation framework and analysis
of results using theMCAT (Wagener and Kollat 2007). The
entire analysis is designed to be self-contained in its execu-
tion, insomuch as users construct the input files and exe-
cute the program in Matlab without any interactive input
until results have been saved. This design allows remote
execution on shared computing resources rather than re-
quiring user interaction on a desktop system. This feature
is useful for potentially long runtimes when a large number
of simulations is necessary to explore a complex parameter
space. We refer to the coupled OTIS model and MCAT
collectively as OTIS-MCAT. We outline the workflow and
details described below in a conceptual figure that sum-
marizes steps from the generation of model input data, to
model execution, to interpretation of OTIS-MCAT plots,
to arriving at conclusions regarding parameter certainty
(Fig. 2).
Overview of computational steps TheOTISmodel is exe-
cuted as a forward-model run for a single stream reach to
perform multiple runs with different combinations of pa-
rameters. Execution requires an upstream concentration
time series as a boundary condition (observed from field
data) and a set of randomly generated parameter values
within user-defined ranges. The model equations in OTIS
This content downloaded from 137.222
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are formulated to include additional processes, including 1st-
order decay in the stream, 1st-order decay in the transient-
storage zone, sorption to streambed sediments from stream
water, and sorption to hyporheic sediment from the hy-
porheic water (Runkel 1998). Input files include parame-
ters for all processes and flags that are used to enable these
mechanisms (if desired) and for routing of a single dis-
solved solute. Our implementation is applicable for only
steady-statedischarge conditions, although theOTISmodel
is capable of other discharge schemes. OTIS-MCAT could
bemodified to allow for such implementations withmodest
effort.
Monte-Carlo analysis TheOTIS-MCATsoftwarepackage
uses the forward-modeling implementation of the OTIS
model to conduct an unstructured Monte-Carlo analysis,
whichmeans that theparameter space is randomly sampled.
This strategy is based on the work presented by Ward et al.
(2013b) and Kelleher et al. (2013). In our implementation,
the user specifies parameter ranges for all parameters con-
trolling the transport and fate of tracers in the simulation.

Parameters can span orders of magnitude for typical val-
ues, so sampling is done with a uniform distribution in a
base-10 logarithmically transformed space to allow selec-
tion of values to be distributed evenly across each order
of magnitude (after Kelleher et al. 2013 and Ward et al.
2013b). The large number of parameter sets tested is de-
signed to overcome any nonuniform distribution in the un-
derlying parameters.We recommend that users sample pa-
rameters across ≥2 orders of magnitude for As, D, and a.
Users must also specify the total number of parameter sets
to be tested. Limited recommendations exist for howmany
parameter sets a user should sample when using Monte-
Carlo analysis. We recommend sampling between 10,000
and 100,000 parameter sets as an initial search, consistent
with recent guidance (Pianosi et al. 2016). We also suggest
that users perform the analysis for multiple Monte-Carlo
sample sizes to verify that parameter certainty outcomes do
not change substantially for a larger number of parameter
samples. Simulations are run for the user-specified reach
length plus 200finite-difference elements downstream from
the observation point. The additional simulated stream
length isolates the downstream boundary condition from
the simulation point of interest tominimize the chance that
results are a computational artifact of the simplified condi-
tions assumed at the boundary.

The choice of spatial and temporal resolution for the nu-
merical solution scheme in OTIS can negatively affect the
accuracy of differential equation solutions in solute trans-
port simulations. The Crank–Nicolson solution scheme
implemented in OTIS is unconditionally stable, but oscil-
lations in the resultant values can exist when time steps
are too large or spatial elements are too small relative to
.138.047 on February 07, 2017 02:09:10 AM
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the advective transport rate of the solute. To minimize nu-
merical error, the code calculates the Courant–Friedrichs–
Lewy (CFL) condition:

CFL5
uDt
Dx

, (Eq. 3)

where u is estimated velocity based on modal transit time,
Δx is the user-specified spatial step, and Δt is the user-
specified temporal step for simulations (Courant et al.
1928). OTIS-MCAT includes warnings for questionable
stability (0.5 < CFL < 1) and breaks to the command line
when solutions are unstable (CFL > 1). This step acts as a
basic filter to help users select spatial and temporal steps
that will yield results withminimal numerical error and will
remove nonphysical computational artifacts from simula-
tions. Adjusting spatial and temporal steps to yield smaller
This content downloaded from 137.222
All use subject to University of Chicago Press Terms 
values of theCFL can reduce numerical error in the Crank–
Nicholson solution scheme, but adjustments must be bal-
anced against computation time, which increases for smaller
time steps.

Model objective functions Numerous objective functions
have been used to evaluate how well simulated break-
through curves derived with OTIS-based analyses match
the observed downstream breakthrough curve. For flexible
comparisons with these studies, OTIS-MCAT calculates
a suite of commonly used objective functions (Gupta and
Cvetkovic 2000, Schmid 2003, Mason et al. 2012, Ward
et al. 2013b), including RSS, the singular objective function
implemented within OTIS-P.

All objective functions, unless otherwise noted, are cal-
culated for both observed and normalized time series of
Figure 2. Conceptual workflow of One Dimensional Transport with Inflow and Storage–Monte-Carlo Analysis Toolbox (OTIS-
MCAT) implementation. Q 5 discharge, A 5 cross-sectional area.
.138.047 on February 07, 2017 02:09:10 AM
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concentration. Time series were normalized by their 0th

temporal moments as:

Cnorm tð Þ 5 C tð Þðt99
0

C tð Þdt
, (Eq. 4)

where t99 corresponds to the time at which 99% of the re-
covered tracer signal above background noise has passed
the monitoring location. Several investigators have identi-
fied t99 as a meaningful time for truncation (e.g., Mason
et al. 2012, Ward et al. 2013b). We use the subscript norm
throughout to denote the normalized concentration time
series or metric.

The root mean squared error (RMSE) is an objective
function that effectively emphasizes fitting to the higher
concentrations in the breakthrough curve. In notation be-
low, Cobs is the downstream breakthrough curve (M/L3),
Csim is the downstream solute tracer [M/L3], and n is the
number of observations in Cobs. The RMSE is calculated as:

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ot5n

t51
Cobs tð Þ 2 Csim tð Þð Þ2

n

s
: (Eq. 5)

The RMSE for log-transformed values of the observed and
simulated concentrations (RMSElog) effectively adds more
weight to errors in the smaller concentrations when calcu-
lating the objective function. The RMSElog is calculated as:

RMSElog 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ot5n

t51
log10 Cobs tð Þð Þ 2 log10 Csim tð Þð Þð Þ2

n

s
:

(Eq. 6)

The RMSE and RMSElog metrics are not normalized to the
magnitude of observed or simulated concentrations. Thus,
their values are not necessarily comparable among model
fits from different data sets. OTIS-MCAT also calculates
the square of the Pearson product–moment correlation co-
efficient for both the observed (r2) and log-transformed
(rlog

2) values using the Matlab function corrcoef. We in-
cluded these values in the software because they are widely
reportedmodel results, but we emphasize that users should
apply these objective functions carefully because high val-
ues for r2 can be achieved when breakthrough curve mag-
nitudes are not matched (indicating good correlation, but
a slopebetweenobservedand simulated values is verydiffer-
ent from 1). To maintain consistency across metrics such
that smaller values indicate a better fit, values of r2and rlog

2

arealso savedas1– r2 and1– rlog
2 for easeofuse.TheRMSE,

r2, and 1– r 2metrics, in both normal and log forms, also are
calculated for the normalized concentration time series.

Several additionalmetrics are calculated for the observed
and simulated downstream breakthrough curves to provide
flexibility in the selection of an objective function. These
metrics enable users to estimate parameter sets based on
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specific fit characteristics of interest. For example, users in-
terested in correctly representing behavior on the rising
limb of the breakthrough curve can select a different ob-
jective function than those for whom accurately represent-
ing the maximum concentration is the most important
objective.

OTIS-MCAT includes objective functions aimed spe-
cifically at matching characteristics of the peak concentra-
tion, including the difference in predicted and observed
peak concentrations (DCpeak) and in predicted andobserved
peak arrival times (Dtpeak). Temporal moments of break-
through curves can contain meaningful information re-
garding solute transport (e.g., Gupta and Cvetkovic 2000,
Schmid 2003), so OTIS-MCAT includes objective func-
tions that quantify differences in predicted and observed
temporal moments. These differences are calculated for
raw and normalized time series, where the 1st-order tem-
poral moment (M1) is calculated as:

M1 5

ðt99
0

C tð Þtdt, (Eq. 7)

where C represents the concentration breakthrough curve
of interest. Here, we follow the analyses by Ward et al.
(2013a, b), where integral methods are based on the first
99% of the signal recovered (t99), although other truncation
timescales also have been suggested (Koestel et al. 2011).
We calculate differences in the 1st temporal moment for
the observed (M1) and normalized (M1,norm) time series.
Higher-order central temporal moments (ln) were calcu-
lated about the mean arrival time (M1) as:

ln 5

ðt99
0

C tð Þ t 2 M1ð Þndt: (Eq. 8)

Central temporal moments were calculated for both ob-
served and normalized time series. We specifically com-
pared the 2nd- and 3rd-order temporal variance (l2 and l3,
respectively) and skewness (γ):

γ 5 l3= l2
3=2

� �
, (Eq. 9)

a measure of asymmetry of the tracer mass around the
mean, for the observed and normalized time series. These
temporal moments can be used to calculate the apparent
dispersivity (λapp) and apparent dispersion (Dapp) as (after
Koestel et al. 2011):

lapp 5
l2,norm

L

2
, and (Eq. 10)

Dapp 5 lappu 5
l2,norm

L2

2M1,norm
: (Eq. 11)

OTIS-MCAT also calculates the holdback function (H ), an
integral measure that describes the deviation from perfect
piston flow (Danckwerts 1953), which is a dimensionless
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value describing howmuch tracer mass has moved through
the reach over the average transport time. H ranges from 0
(perfect piston flow) to 1 (no movement) calculated as:

H 5
1

M1,norm

ðM1,norm

t50
F tð Þdt (Eq. 12)

F tð Þ 5
ðt
τ50

Cnorm τð Þdτ (Eq. 13)

where τ is the time variable of integration. The value ofH is
strongly affected by tailing in the breakthrough curve be-
cause long residence times in transient-storage result in
highermean residence times relative to the rest of the break-
through curve. Thus, higher values of H indicate more
‘holdback’, which can be interpreted as greater influence
of transient storage in the system.

OTIS-MCAT also calculates objective functions that
compare the times of arrival for specific fractions of the sol-
utemass in thepredictedandobservedbreakthroughcurves.
Koestel et al. (2011) quantified the time at which specific
quantiles of recovered solute tracer mass passed the down-
streamobservationpoint.Forexample, the timeto5%recov-
ery (t5) is calculated by solving:

0:05 5

ðt5
0
Cdtðt99

0
Cdt

: (Eq. 14)

A series of quantile arrival times are essentially a com-
pressed version of the information contained in a relatively
high-resolutionbreakthroughcurve.Last,OTIS-MCATcal-
culates the transient-storage index (TSI) as the time elapsed
from the peak to t99 (i.e., TSI 5 t99 2 tpeak) (after Mason
et al. 2012). The TSI is another metric that is particularly
sensitive to the effects of tailing behavior in the break-
through curve.

Altogether, OTIS-MCAT calculates a total of 33 met-
rics that can all be used in an objective function for analysis
of parameter sensitivity and uncertainty. Customized met-
rics could be defined in the MCAT code with modest ef-
fort. As with all model inversions, the choice of the objec-
tive function has the potential to bias parameter estimates,
depending on whether the associated assumptions about
the structure of residual error between predictions and ob-
servations aremet. In practice, this statistical detail has been
largely ignored in parameterizations with OTIS, and it is
outside the scope of our paper. However, from the statis-
tical perspective, each objective function is likely to bias
parameter estimates in a different way, and characterizing
which of these parameter sets are closest to the ‘true’ nature
of channel hydraulics is problematic. For a given observa-
tional data set, the differences in parameter estimates ob-
tained via different objective functions are a form of statis-
tical bias (i.e., a computational artifact), and thus, these
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differences should not be subjected to physical interpreta-
tion. Furthermore, the existence of a single truly unbiased
objective function is rare, because nonrandom structure
in residual error is quite common in most model fits (e.g.,
autocorrelation). We leave formal analysis of statistical bias
as a source of parameter uncertainty to future research, but
we remind the reader that the choice of an objective func-
tion is frequently (and perhaps ironically) an injection of
some degree of subjectivity into a model inversion analysis.

MCAT Results from the Monte-Carlo simulations using
OTIS are stored and passed into the MCAT, a Matlab li-
brary of tools created to analyze parameter sensitivity and
uncertainty in inversions of environmental models (Wage-
ner and Kollat 2007). MCAT contains tools to evaluate
model performance, parameter sensitivity, and predictive
uncertainty. The MCAT library (version 5) is bundled with
the OTIS-MCAT software package. Additional details on
the interpretation of MCAT results can be found in papers
by Wagener et al. (2004) and Wagener and Kollat (2007).

Acknowledging other sources of error and uncertainty
The inference of parameter values from inverse modeling
of field data is subject to several limitations beyond those
associated with parameter uncertainty and insensitivity
(the primary subjects of our study). First, all field data are
subject to uncertainty. In solute-tracer studies, this uncer-
tainty is most notably associated with the truncation of
late-time tailing caused by limited sensitivity of the instru-
ment, commonly the ‘window of detection’ problem (Har-
vey et al. 1996). One strategy to minimize this error is artifi-
cial extension of late-time behavior by fitting a distribution
to the observed information (e.g., Drummond et al. 2012).
Second, the structure of the TSM itself may be a source of
error. Investigators have demonstrated that inclusion of
multiple storage zones (e.g., Choi et al. 2000, Briggs et al.
2010) and their configuration (Kerr et al. 2013) may improve
model fits, although none of these authors evaluated these
improvements within an uncertainty framework. Third, the
formulation of the TSM assumes an exponential residence-
time distribution for the storage zone, although other mod-
els may relax this limitation (e.g., Haggerty et al. 2000,
2002, Wörman et al. 2002). Fourth, many models include
assumptions of spatially homogeneous and temporally static
parameter values. Last, we limit our analyses to fitting a sin-
gle solute in our study. Fittingmultiple species, such as tem-
perature and solute concentration, may lead to improvements
in parameter certainty (e.g., Neilson et al. 2010).

RESULTS
Case study 1: benchmarking the OTIS-MCAT
approach at Uvas Creek
Introduction and field experiment We applied OTIS-P
and OTIS-MCAT software to model inversions using the
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well-studied Uvas Creek data set. We used this data set to
illustrate the ability of the coupled approach to characterize
a broader region of parameter space and to compare results
obtained with existing tools. This case study also serves to
demonstrate the steps required to apply the OTIS-MCAT
tools responsibly and to interpret parameter certainties.
This case study highlights the extension of the OTIS-P ap-
proach toward a better understanding of the parameter
space around the best-fit values that can be obtained via
OTIS-MCAT.

The Uvas Creek experiment (Zand et al. 1976, Avanzino
et al. 1984) has become a benchmark data set for investiga-
tors who collect and analyze stream solute-tracer data, and
it has been analyzed by numerous investigators (Bencala
1983, Bencala and Walters 1983, Jackman et al. 1984, Ken-
nedy et al. 1984, Wagner and Gorelick 1986, Runkel 1998,
Wörman 1998, 2000, Runkel et al. 1999, Schmid 2003,
Scott et al. 2003, Gooseff et al. 2005, 2013, Kazezyilmaz-
Alhan and Medina 2006, Kumar and Dalal 2010). Briefly,
Uvas Creek is a small, headwater stream in Santa Clara
County, California, USA, with a down-valley gradient of
∼3% through the study reach. The stream drains a forested
tributary area of ∼9 km2 and has primarily a pool and riffle
morphology (Bencala and Walters 1983, Avanzino et al.
1984). NaCl was injected into the stream channel above
the study reach at a steady rate for 3 h. At the injection loca-
tion, dischargewas 12.5L/s andbackgroundCl2 concentra-
tionwas 3.7mg/L.Grab sampleswere collected 38, 105, 281,
433, and 619 m downstream from the injection location
to characterize resulting breakthrough curves in the main
channel. Samples were collected regularly before, during,
and after passage of the solute tracer.We used the data from
the38-and619-msampling locationsas theupstreambound-
ary condition anddownstreamobserved breakthrough curve,
respectively, for our experimental reach.
Model application Input files for the case study are bun-
dledwiththesoftwaredownload(upstream.csv,downstream
.csv, and control.txt). For demonstration, we conducted
2 suites of model runs. In suite 1, we ran the OTIS model
for 50,000 parameter sets using a broad range of potential
values forA (0.1–1m2). For the TSM,A is a highly sensitive
parameter because of its dominant control on the bulk ad-
vection through the system (Wagner and Harvey 1997,
Wagener et al. 2002, Scott et al. 2003, Kelleher et al. 2013).
In suite 2, we created a denser coverage of parameter space
by narrowing the range of potential values for A (0.3–
0.5 m2) and ran 50,000 simulations. This range for A was
based on the optimal value near 0.4m2 identified from anal-
ysis of suite 1.A also could be constrained based on observa-
tions in the field or estimated from A5Q/u where the peak
transit time is used to estimate u. This estimation would
eliminate the need for thefirst suite ofmodel runs to narrow
the potential range for A. We included suite 1 in our results
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to demonstrate that narrowing the possible parameter value
range forAmay be needed to evaluate othermodel parame-
ters meaningfully (Kelleher et al. 2013). For other parame-
ters, ranges of 0.01 ≤ D ≤ 10, 0.01 ≤ AS ≤ 1, and 1 � 1025 ≤
a≤1�1021were used for both suites of simulations. Ranges
forA,AS, andDwere set based on those used byWard et al.
(2013b). The range fora is narrower than that used byWard
et al. (2013b) based on our experience that the lowest values
are functionally indistinguishable for this parameter.

We designed the 2 suites of model runs to show typical
parameter-set behavior and to enable users to explore all
functions in the MCAT. Simulation of 50,000 parameter
combinations took <24 h to complete on a single-core pro-
cessor of Indiana University’s BigRedII supercomputer.
Analyses presented by Ward et al. (2013b) and Kelleher
at el. (2013) simulated 100,000 and 42,000 combinations,
respectively, of the 4 parameters estimated in their studies
(A, As, a, D). Users running any analysis should verify that
conclusions regarding parameter certainty do not change
for an increasing number of parameter sets.

We evaluated only 4 hydraulic parameters in this ex-
ample, but other OTIS parameters, such as those charac-
terizing reactive transport, could be added to an MCAT
analysis. As the number of free variables increases (e.g., in-
cluding reactive tracer terms, lateral inflows and outflows,
sorption–desorption dynamics) the number of model runs
also should increase to sample the parameter space with
adequate density. Furthermore, parameter sensitivity and
certainty are likely to be reduced as more estimated param-
eters are added to themodel inversion. In the following sec-
tions we use examples from the Uvas Creek simulations to
describe how a user would evaluate the sensitivity and un-
certainty of a given parameter.

Interpreting parameter certainty from OTIS-MCAT We an-
alyzed parameter certainty with respect to 2 questions:
1) is the parameter estimate sensitive to the observations?,
and 2) is confidence in the best-fit parameter estimate suf-
ficient (i.e., is the CI narrow relative to the range of possible
parameter values)? We applied these questions to assess
certainty with respect to the 4 OTIS model parameters
and in the context of several different objective functions.
We performedOTIS-MCAT analyses for 2 different ranges
for A (suites 1 and 2), but we focused most of our discus-
sion on parameter sensitivity and certainty examples from
suite 2 where A is drawn from a narrower range of values.

Are parameters sensitive? A parameter is consid-
ered sensitive if variation in model performance can be
clearly explained by variation in that parameter to whatever
extent is considered meaningful by the modeler. Sensitivity
can be assessed based on plots that display the relationship
between performance (i.e., different objective function val-
ues) and parameter values. Within MCAT, 4 plots can be
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used to assess parameter sensitivity: 1) dotty plots, 2) iden-
tifiability plots, 3) posteriori distribution plots, and 4) re-
gional sensitivity analysis plots. Dotty plots map objective
functions against parameter values, isolating how model
performance (objective function value) varies with param-
eter values for a single parameter (Fig. 3A–O). In the dotty
plot display, each point represents an objective function
calculation associated with simulation from a candidate pa-
rameter set. Sensitivity of each parameter is assessed by the
nature of variation in objective function values across the
sampling range for that parameter. In the context of a dotty
plot, a parameter is considered sensitive if there exists a re-
gion of samples that ‘dips’ toward a particular parameter
value (Fig. 1A). This phenomenon can be observed in Fig. 3,
particularly for smaller percentages of behavioral thresholds
based on RMSE (panels K–N). The width and ‘sharpness’ of
the dip quantify the degree of sensitivity of the parameter,
where wider and flatter distributions in the dip indicate less
sensitivity. A completely insensitive parameter is indicated
by an uninterrupted horizontal ‘front’ of dots across the
minimal values of the objective function (Fig. 1B). This front
demonstrates a lack of any particular parameter samples
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that produce a better fit (lower objective function value)
than other samples across the front.

To explore how parameter sensitivity varies for different
definitions of behavioral runs, the MCAT allows users to
interactively set the maximum threshold value of the ob-
jective function, below which parameter values will be con-
sidered a behavioral subset of the Monte-Carlo results. In
some cases, reducing the parameter space examined to only
behavioral runsmay display a very similar picture of param-
eter sensitivity. More commonly, including all Monte-
Carlo parameter sets as opposed to just the behavioral sub-
set may make evaluating whether a parameter is sensitive
within the behavioral region difficult. Thus, sensitivity may
become more apparent when dotty plots are reduced to
only behavioral runs (e.g., the increasingly clear sensitivity
forD when decreasing the number of data points in the be-
havioral set in Fig. 3A, F, K). When evaluating parameter
sensitivity with dotty plots, we recommend that users eval-
uate sensitivity for a range of behavioral thresholds. In ad-
dition, behavioral parameter sets can be used to generate
the corresponding behavioral breakthrough curve simula-
tions and examined alongside the dotty plots (Fig. 3E, J, O).
Figure 3. Dotty plots for parameter values vs Root Mean Square Error (RMSE) for behavioral thresholds including the top 20 (A–E),
10 (F–J), and 1% (K–O) of sets of simulations for the longitudinal dispersion coefficient (D) (A, F, K), cross-sectional area (A) (B, G, L),
cross-sectional area of the transient-storage volume (As) (C, H, M), the transient-storage exchange rate (a) (D, I, N), and simulations
(black) of tracer-solute concentrations that correspond to the behavioral parameter sets compared to the observed breakthrough curve
(red) (E, J, O).
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Comparing the parameter sets to the behavioral predictions
highlights how choice of the behavioral threshold corre-
sponds to the range of simulations included in the analysis
with respect to the observed breakthrough curve.

Identifiability plots display cumulative distributions and
gradients along that cumulative distribution for a user-
defined behavioral threshold (Fig. 4A–L). Gradients can
be extracted in 2 ways from this figure: based on the slope
of the line for the cumulative distribution function (a plot of
the cumulative gradient) and based on the height and tint of
the bar (a measure of the local gradient at a given point
in the parameter space). In Fig. 4A–D, these results are dis-
played for a threshold of 10%. We would conclude from
Fig. 4A, C, and D that parameter estimates for AS, a, and
D all have portions of the parameter space with greater like-
lihood based on steeper gradients (high line slope and tall
bars). Behavioral parameter estimates for A (Fig. 4B), in
comparison, have similar gradients across much of the pa-
rameter range (equal height and tint of bars depicting con-
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stant gradient in cumulative distribution). The parameter
A appears insensitive, and therefore uncertain, from this
analysis. This apparent insensitivity is in part because these
results reflect sampling of a narrow range of values for
A, identified as the most likely values in the analysis of a
1st suite of model runs, and wide ranges for all other param-
eters. Thus, Fig. 4B suggests that parameter estimates for A
between 0.3 and 0.5 m2 yield similar model performance.

A posteriori parameter distribution plots condense the
data shown in dotty plots into histograms of parameter val-
ues and performance (Fig. 4E–H). Parameters from the be-
havioral runs are binned into 20 groups of equal size, with
bar height visualized as the sum of likelihoods (calculated
as 1 – [the objective function normalized across its range]).
In contrast to identifiability plots, which display the gra-
dient associated with the cumulative distribution of be-
havioral parameter sets, a posteriori parameter distribution
plots display the likelihoods of behavioral parameter values
conditioned on a given objective function (Wagener and
Figure 4. Parameter identifiability (the black line represents the normalized cumulative distribution (Cum. dist.) of RMSE for the
top 10% of model solutions and bar height and shading represent the gradient of the likelihoods across behavioral parameter values
approximated for 11 equally sized bins across the parameter space (A–D), RSME likelihood based on the top 10% of all model runs
(E–H), and normalized cumulative (Cum. norm.) distributions of RMSE (lines represent the best 10% of model runs binned into
1% increments; each line represents 1% of all model simulations) (I–L) for D (A, E, I), A (B, F, J), As (C, G, K), and a (D, H, L). Steeper
gradients indicate increased sensitivity at a given parameter value. Abbreviations are as in Fig. 3.
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Kollat 2007). Taller bars indicate higher likelihood of a pa-
rameter value. Sensitive parameters should exhibit higher
variation in likelihood across different parameter values,
and insensitive parameters will have similar likelihoods
across different parameter values.

A posteriori parameter distribution plots may capture
similar behavior to those shown in dotty plots (Fig. 3A–
D, F–I, K–N). For instance, higher likelihoods are concen-
trated in the middle of the parameter range for D (Fig. 4E),
on the upper end of the parameter ranges for A and As

(Fig. 4F, G), and the lower end of the parameter range
for a (Fig. 4H), consistent with areas associated with better
fit (i.e., lower RMSE; Fig. 3A–D, F–I, K–N). This visualiza-
tion treats all parameter values that meet an objective func-
tion threshold as behavioral, and therefore, as having an
equal weight regardless of objective function value. Thus,
cases may exist where a higher density of points in an area
with worse performance could still produce similar levels
of likelihood as areas of the parameter space with high per-
formance, leading to misdiagnosis of a parameter as insen-
sitive. Thisproblemcanbe seen forparameterD (cf. Figs3A,
F, K, 4E). The areas of highest likelihood are concentrated
around 1020.5 (Fig. 4E), corresponding to the portion of
the parameter space with the best objective function fits
(Fig. 3A, F, K), and 100, where there is a high concentration
of behavioral values with higher (worse) RMSE values. Thus,
we recommend that users carefully select and evaluate mul-
tiple behavioral thresholds, especially when using these plots,
and use all plots to judge parameter certainty.

Parameter sensitivity can further assessed based on the
MCAT regional sensitivity analysis plots (Fig. 4I–L). These
figures are produced by dividing the population of param-
eters for behavioral runs into 10 bins of equal size sorted by
objective function values, which are converted into likeli-
hoods. The cumulative distribution of each bin is plotted
as the parameter value vs the cumulative likelihood. The
steepest portions of the cumulative distributions represent
the highest sensitivities, where large changes in the objec-
tive function value are associated with small changes in the
parameter value (as is the case for the highest-likelihood
simulations of D, Fig. 4I). The spread of the lines is another
indicator of parameter sensitivity. Tightly clustered lines in-
dicate low sensitivity of the objective function to parameter
values (e.g., a, highest likelihood distributions; Fig. 4L),
whereas increased spread in the lines indicates a large dif-
ference in likelihood corresponding to large differences in
the parameter value, consistent with the definition of a sen-
sitive parameter (e.g., D and As; Fig. 4I, K).

One advantage ofMCAT is the automated display of the
data in a variety of forms, which allows users to make ro-
bust interpretations based on all visualizations. Figure 4A–
L provides an example of how multiple plots can be used
in concert to interpret parameter sensitivity. Interpreting
across this suite, we would conclude that parameter D is
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very sensitive, parameters As and a are less sensitive, and
parameter A is least sensitive among the 4, but still displays
some sensitivity across parts of the parameter space. We
would conclude that no parameters are insensitive. Over-
all, no clear-cut quantitative definition exists when using
these plots to define whether a parameter is sensitive or in-
sensitive. We recommend, at minimum, considering how
parameter values vary for all model runs and for some be-
havioral threshold (selected interactively by the MCAT
user), to verify that a parameter is both globally and locally
sensitive.

A lack of parameter sensitivity could be the result of sig-
nificant parameter interactions (Wagener et al. 2002, Goo-
seff et al. 2005, Kelleher et al. 2013). When 2 different pa-
rameters are capable of producing similar behavior in the
model, they are said to interact, which ultimately reduces
the ability to differentiate their individual effects on model
predictions. In the TSM, both longitudinal dispersion and
transient-storage produce spreading and tailing in the in-
stream breakthrough curve. As such, the parameters inter-
act, challenging the ability of model users to find an area of
the parameter space with a single parameter value that pro-
duces a single best objective function value because this in-
teraction probably will highlight multiple portions of the
parameter space for different reasons (i.e., fitting the tail
with a high value of D and low values of As and a, and
the converse of these values). This interaction does not
mean that the observations contain no useful information
about the processes, but that the processes cannot be dif-
ferentiated given the model structure and observed data.

Is a parameter value certain? Parameter certainty
can be assessed by comparing a single best-fit value to the
range or distribution of values across a suite of behavioral
runs for a given objective function. We cannot assume that
any number of random samples will explore the entire pa-
rameter space, but the goal of a Monte-Carlo exercise is
to characterize the distribution of possibilities. We include
1 additional plot in the MCAT that displays the distribu-
tion of parameter values meeting a range of behavioral
thresholds beside the ‘best’ parameter value (smallest objec-
tive function) across theMCATensemble for a single objec-
tive function.

Interpretation of parameter certainty will vary for differ-
ent objective functions. For the Uvas Creek Experiment, we
denoted behavioral runs as those corresponding to the top
10% of all values. Figure 5A–P displays interpretation of
parameter certainty as a function ofmultiple objective func-
tions, with frequency distributions of behavioral parameter
values (Fig. 5E–H, M–P) shown below dotty plots (RMSE,
absolute error in t99; Fig. 5A–D, I–L). Deciding which pa-
rameters are certain will require use of dotty plots in the
case when ranges fromOTIS-P are available and parameter
value probability distribution functions, which display the
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distribution of parameter values corresponding to a range
of behavioral thresholds. All parameters appear certain for
RMSE based on both of these plots (Fig. 5A–H).We reached
this conclusion because, for each parameter, probability dis-
tributions corresponding to smaller subsets of the parame-
ter space produce a narrower range of parameter values and
display peakedness around the best value indicated by the
vertical gray line. In addition, the best value on each dotty
plot and the CIs obtained fromOTIS-P are similar and con-
verge on a narrow area of the parameter space. We evalu-
ated results against OTIS-P estimates for RMSE, but this
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comparison should be made carefully for other objective
functions because only RMSE is similar to the objective
function used by OTIS-P.

We also included an example, fitting the model to t99,
when parameters are highly uncertain. In contrast to
RMSE, dotty plots for t99 indicate a general lack of sensitiv-
ity (Fig. 5I–L). Each parameter probability distribution,
even at the lowest behavioral threshold (0.1%), contains
parameter values that span a large part of the parameter
range. This pattern is especially noticeable when compar-
ing ranges across behavioral thresholds for a (cf. Fig. 5H,
Figure 5. Dotty plots (A–D, I–L) displaying parameter values for D (A, E, I, M), A (B, F, J, N), As (C, G, K, )), and a (D, H, L, P) vs
objective function values for the best 10% of model runs judged by RMSE (A–D) and absolute error in the time at which 99% of the
recovered tracer signal above background noise has passed the monitoring location (t99) (I–L). The mean (vertical dashed line) and
95% confidence intervals (shaded regions) for One Dimensional Transport with Inflow and Storage nonlinear regression algorithm
(OTIS-P) optimized parameters (our study) and UCODE-optimized parameters (Gooseff et al. 2013) are shown in red and blue, re-
spectively. OTIS–Monte-Carlo Analysis Toolbox (OTIS-MCAT) best-fit parameters for each objective function are shown in the large
magenta circle on each subplot. We also show probability density functions for each parameter (E–H, M–P) corresponding to the
top 20, 10, 5, 1, and 0.1% of values, as selected by each objective function. The parameter value corresponding to the best objective
function is shown as a gray solid line. Abbreviations are as in Fig. 3.
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P). Behavioral values for t99 error are spread nearly evenly
across the parameter sample range (Fig. 5P), but ranges for
behavioral values of a by RMSE are concentrated <1024

(Fig. 5H). As demonstrated across these examples, the in-
formation contained in different objective functions will
vary, and not all objective functions will be useful for all
applications.

As Fig. 5A–P illustrates, users will benefit from consid-
ering parameter certainty across multiple objective func-
tions because some may contain information about all pa-
rameters (e.g., RMSE), whereas others may contain little
information (e.g., t99). Objective functions also can be se-
lected based on the goals of a given study (e.g., using tpeak
if advection is a key interest, using skewness if break-
through curve asymmetry is a key interest). We expect in-
terpretation of sensitivity and uncertainty to change for
every tracer test because the conditions of a given stream
(e.g., reach length, flow rate, and other characteristics) will
influence the shape of the observed breakthrough curve.
As such, some objective functions should contain informa-
tion about parameter values across most applications (e.g.,
RMSE and its analog, RSS, used by OTIS-P), but the useful-
nessof otherobjective functionsprobablywill changeacross
tracer tests and stream conditions. The OTIS-MCAT user
bears the responsibility of selecting an appropriate objec-
tive function for a given application and evaluating this se-
lection and its potential bias across the suite of informa-
tion contained in dotty plots and behavioral simulations
(Fig. 3A–O), sensitivity displays (Fig. 4A–L), and compari-
sons to OTIS-P (Fig. 5A–P).

Which parameters are certain? On the basis of
global sensitivity analyses conducted with respect to RMSE,
shown in the context of best values determined via UCODE
(Poeter and Hill 1998) and OTIS-P from previous studies
(Scott et al. 2003, Gooseff et al. 2013; Fig. 4A–L), we would
regard all parameters as both sensitive and certain. The
steps to arriving at these conclusions are outlined concep-
tually in Fig. 2. This procedure can be broadly implemented
to investigate parameter sensitivity and certainty with re-
spect to a given objective function for any tracer test. Results
of our study agree with past analyses of the TSM, wherein
A is the most sensitive and identifiable variable and wide-
spread parameter uncertainty is present in combinations of
other parameters (Harvey et al. 1996, Wagner and Harvey
1997, Scott et al. 2003, Kelleher et al. 2013). As such, our
main contribution is to provide a tool to transient-storage
modelers that enables quantification of parameter certainty
and sensitivity and allows the interpretation of model re-
sults in the context of parameter identifiability.

User-defined parameter ranges may negatively affect the
interpretation of OTIS-MCAT results An important choice
within the MCAT analysis is selecting user-defined pa-
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rameter ranges. The width of these ranges will significantly
change interpretation of model performance and parame-
ter sensitivities. Here, we describe a 2-step approach that
illustrates how interpreting parameter certainty based on
information obtained via OTIS-MCAT may change as pa-
rameter ranges narrow, specifically A. By constraining A,
more realizations for other parameters are likely to fine-
tune better model fits because advective velocity, which is
mostly controlled by A, is more accurately matched. Con-
versely, the best values for a, D, and As will not produce
high-quality model fits if the peak does not arrive at the ob-
servation location at the right time. We display this influ-
ence for dotty and identifiability plots in Fig. 6A–D. The
range of behavioral RMSE values for suite 1 (Fig. 6A–D left
columns) is much wider than the range for suite 2 (Fig. 6A–
D right columns) (comparing all parameters), indicating
that the behavioral runs for suite 2 include many better-
performing parameter sets. Dotty and identifiability plots
displaying parameter values for a (Fig. 6D), D (Fig. 6A),
and AS (Fig. 6C) after A was narrowed have more peaked,
defined surfaces (dotty plots) and steeper gradients (identi-
fiability plots). Thus, we conclude that analyses may con-
tain more information regarding parameter sensitivities
when the parameter ranges for A are constrained.

The role of alternate or multiple objective functions OTIS-
MCAT calculates a suite of 33 alternative objective func-
tions to quantify model outcomes. General recommen-
dations about which objective functions may contain
information for a given application are difficult to make be-
cause the information contained in a given breakthrough
curve is likely to vary based on the type of stream, flow con-
ditions, length of the tracer test, or other environmental as-
pects related to the site and the tracer data, all of which con-
tribute to the truncation of observed signals (Drummond
et al. 2012). As a first step, we recommend that users eval-
uate parameter certainty with respect to RMSE because,
among the many objective functions calculated by OTIS-
MCAT, itmost closely emulates the formof RSS and, there-
fore, is most readily compatible with outputs fromOTIS-P.

To demonstrate how different objective functions may
be used to inform parameter certainty (and how different
objective functions may be highly uncertain), we present
box plots of parameter values for the top 10% of model out-
comes for each objective function (Fig. 7A–D). Results are
shown only for the suite 2 model runs (narrowed range for
A), but are similar to those calculated for suite 1. In Fig. 7A–
D, some combinations of parameters and objective func-
tions produce very narrow ranges of optimal parameter
values. For example, a values were constrained to narrow
ranges for t90, t95, t90norm, and t95norm (see Fig. 7 for defini-
tions), results suggesting these objective functions (Fig. 7D),
for this particular case, may contain more information
regarding exchange between the advective channel and
.138.047 on February 07, 2017 02:09:10 AM
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transient-storage zone. This interpretation was confirmed
by the high information content for a observed at late
times in analyses here and elsewhere (Wagener et al.
2002, Wlostowski et al. 2013). Wider box plots demon-
strate a larger range of parameter values that produce be-
havioral results for a given objective function. Parameter
This content downloaded from 137.222
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estimates are likely to be uncertain for objective functions
with wide interquartile ranges.

Given that the ultimate goal is to characterize a stream
reach based on sensitive and certain parameters, OTIS-
MCAT enables evaluation of these criteria across a range
of different objective functions. This approach extends be-
Figure 6. Dotty plots and identifiability plots (A–D) for a simulation set with wide bounds on cross-sectional area (A) (suite 1;
A range 5 0.1–1 m2) (left columns in A–D) and one with narrow bounds on A (suite 2; presented in all other figures, range 5 0.3–
0.5 m2) (right column in A–D) for parameter values D (A), A (B), As (C), and a (D). Both figures display results for the top 10% of
model runs for Root Mean Square Error (RMSE) for a suite of 50,000 parameter sets. Where A is sampled across wide bounds, uncer-
tainty of all other parameters is high because of overwhelming sensitivity of results to A (i.e., if A is not correct, no values of other
parameters can help the model fit). Narrowing the sampling range for A based on results from suite 1, improved certainty of other
parameters. The narrower range for A in suite 2 is denoted on the dotty plot for A for suite 1. Cum. dist. 5 cumulative distribution.
Abbreviations are as in Fig. 3.
.138.047 on February 07, 2017 02:09:10 AM
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Figure 7. Box plots for the distribution of D (A), A (B), As (C), and a (D) for the top 10% of model runs for each objective function,
enabling a preliminary assessment of how robust a parameter value may be across a range of possible objective functions. More tightly
grouped parameter values indicate a more certain parameter. Objective functions are broadly organized by the objective they typically
address. Black boxes represent the interquartile range, whiskers designate the 10th and 90th percentiles, small dots are outliers, and the
circle within the interquartile range is the median value. RMSE 5 root mean square error, r2 5 coefficient of determination, Mn 5 nth

temporal moment, ln 5 nth central temporal moment, tX 5 time to X% of signal passed, and the subscript norm indicates the value
was calculated for the concentration time series normalized with Eq. 4).
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yond the standard objective functions used by OTIS and
OTIS-P. However, this extension limits our ability to com-
pare results to OTIS-P estimates. If a parameter is well
identified for an objective function not included within
OTIS-P, obtaining its unique value for stream-reach char-
acterization can be done in 1 of 2 ways. For the case where a
large number of model runs already have been performed,
the unique value can be approximated from the OTIS-
MCAT analysis. Otherwise, researchers should consider
implementing an optimization algorithm that can search
according to the given objective function. For example, the
Shuffled Complex Evolution algorithm is one optimization
tool that readily interfaces with Matlab (Duan et al. 1993,
1994). Each objective function has inherent assumptions
andpossible biases.Users shoulduse a single objective func-
tion to assess all parameters. For example, assessingAon the
basis of RMSE and D on the basis of r2 might be inappro-
priate because these objective functions emphasize differ-
ent aspects of the breakthrough curve.

Comparison to OTIS-P and UCODE analyses A premise of
our paper is that the OTIS-MCAT outputs complement
the OTIS-P estimates of parameter uncertainty. To dem-
onstrate the paired use of OTIS-MCAT and OTIS-P, we
also completed parameter optimization based on OTIS-P
following procedures outlined by Runkel (1998). We exe-
cuted multiple sets of optimization runs, starting from
an initial estimate of the best-fit values based on minimum
RMSE from the Monte-Carlo simulations. We stopped it-
erating with OTIS-P when parameter values changed by
<0.1% between subsequent runs with parameter results
summarized in Table 1. Gooseff et al. (2013) presented re-
sults from parameter optimization for the same data set
This content downloaded from 137.222
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that were conducted with UCODE based on minimizing
the sum of weighted squared errors (Table 1). We con-
structed dotty plots superimposed by the OTIS-P and
UCODE optimized parameter values and 95% CIs to com-
pare OTIS-P and UCODE results to the OTIS-MCAT out-
puts (Fig. 5A–D, I–L).

The best-fit OTIS-MCAT value (conditioned on RMSE)
and OTIS-P values (conditioned on RSS) were nearly iden-
tical for all parameter estimates obtained via OTIS-MCAT
and OTIS-P, and the OTIS-MCAT best-fit values always
were within the OTIS-P 95% CI (Table 1, Fig. 5A–D).
OTIS-MCAT, UCODE, and OTIS-P all suggest similarly
narrow (and therefore high) levels of confidence in param-
eter estimates, with at least order-of-magnitude accuracy
in model predictions based on existing tools (Table 1).
However, interpreting parameter sensitivity and certainty,
while supported by the information in Table 1, is further
justified by the suite of analyses contained in OTIS-MCAT.
Thus, OTIS-MCAT, especially when used alongside OTIS-
P, can provide a clear picture of parameter certainty and
sensitivity for several combinations of parameters and ob-
jective functions, thereby allowing users to exploit fully all
of the information available across the breakthrough curve.

In contrast, when the objective function is changed, pa-
rameter estimates obtained OTIS-MCAT andOTIS-P may
not identify best estimates in similar areas of the parameter
space (Fig. 5I–L). This situation is especially apparent when
comparing best estimates for OTIS-MCAT and OTIS-P
to UCODE estimates, which are based on a slightly differ-
ent objective function. The 95% CI obtained from UCODE
(Gooseff et al. 2013) did not include the OTIS-MCAT best
fit for A,D, or AS (Fig. 5I–K). Results for the objective func-
tion of maximizing r2 also demonstrate how use of a differ-
Table 1. Comparison of best-fit transient-storage model parameters and 95% confidence intervals (CIs; in parentheses) based on mul-
tiple fitting techniques for Uvas Creek. OTIS 5 One Dimensional Transport with Inflow and Storage, OTIS-P 5 OTIS nonlinear
regression algorithm, OTIS-MCAT 5 OTIS-Monte Carlo Analysis Toolpack, RSME 5 Root Mean Square Error, D 5 the longitudi-
nal dispersion coefficient, A 5 cross-sectional area, As 5 cross-sectional area of the transient-storage volume, a 5 the transient-
storage exchange rate.

Parameter Gooseff et al. (2013)a OTIS-Pb

OTIS-MCAT

RMSEc r2c t99
c

D (m2/s) 0.094 (0.073–0.120) 0.242 (0.137–0.348) 0.261 (0.237– 0.285) 0.147 (0.139–0.157) 0.465 (0.286–0.644)

A (m2) 0.497 (0.489–0.505) 0.424 (0.409–0.440) 0.416 (0.413–0.420) 0.395 (0.391–0.398) 0.344 (0.339–0.350)

AS (m
2) 0.082 (0.074–0.091) 0.253 (0.148–0.357) 0.279 (0.254–0.303) 0.126 (0.101–0.151) 0.138 (0.112–0.165)

a (1025/s) 2.63 (2.07–3.34) 2.56 (1.70–3.43) 3.42 (3.15–3.68) 631 (424–839) 747 (537–957)
.138.047 on February 07
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a Reach “2-5” used by Gooseff et al. (2013). Optimization with UCODE (Poeter and Hill 1998). Objective function is minimization of weighted least
squares objective function (Scott et al. 2003, Gooseff et al. 2013).

b Optimization with OTIS-P (Runkel 1998) using STARPAC (Donaldson and Tryon 1990). Objective function is minimization of residual sum of
squares.

c Monte-Carlo simulation with OTIS-MCAT. Mean and 95% CI for the mean reported for the top 0.5% of model runs based on minimizing RMSE,
maximizing r 2, and minimizing the difference in t99 between observed and predicted breakthrough curves.
-and-c).
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ent objective function can lead to disagreement in best-fit
parameter estimates when compared to OTIS-P results
(Table 1).
Case study 2: Stringer Creek
Field experiment and modeling In August 2005, a series
of conservative solute-tracer injections were completed
along Stringer Creek in the Tenderfoot Creek Experimental
Forest in Montana, USA (Payn et al. 2009). Stringer Creek
is a 2nd-order stream draining a 5.5-km2 catchment. The
stream itself includes ∼2600 m of valley length. Here, we fo-
cus on results of 2 instantaneous injections of NaCl into the
stream channel for valley segments with downstream co-
ordinates 100 and 2500 m upstream from the permanent
gauge. These segments are representative of 2 primary ty-
pologies of breakthrough curves identified by Kelleher et al.
(2013) in their study of the same data set. In-stream tracer
breakthrough curves were recorded as specific conduc-
tance at the up- and downstream ends of each 100-m valley
segment. Additional details about the field site and exper-
iments were published by Payn et al. (2009), Patil et al.
(2013), Ward et al. (2013b), and Kelleher et al. (2013).

For each segment, we applied OTIS-P as detailed in the
user manual (Runkel 1998) and iterated to a best-fit param-
eter set. The STARPAC tool yielded local estimates of pa-
rameter certainty as 95% CIs. We also applied the OTIS-
MCAT. Parameter ranges were set as 1023 ≤ D ≤ 5 m2/s,
0.01 ≤ As ≤ 10 m2, and 1027 ≤ a ≤ 0.1/s for both segments.
We used modal advective velocity and discharge to esti-
mate a channel area, with parameter bounds set as ±50%
around this estimate for each segment (∼0.11 ≤ A ≤ 0.33 m2

and0.031≤ A ≤0.095m2 for the100- and2500-msegments,
respectively). For each experiment we sampled 100,000
uniformly sampled realizations and assessed model fitness
based on RMSE.
Interpretation of parameter identifiability For the
Stringer Creek data, both OTIS-P and OTIS-MCAT pro-
This content downloaded from 137.222
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duce best-fit parameter values with narrow 95% CIs (Ta-
ble 2). If using only 1 of these methods, the interpretation
of these results would be that these parameters can be in-
terpreted reasonably or that the user has high confidence
in these parameter values. Taken together, these CIs add
an element of uncertainty to the interpretation. Values for
A, the most certain parameter, are similar between the 2
methods. However, the 95% CIs are nonoverlapping for D,
As, and a. Thus, 2 unique methods have produced best-fit
parameters with comparableCIs, but uniquely different val-
ues. In this case, the additional insight provided by OTIS-
MCAT aids interpretation of parameters. Based on dotty
plots, the parametersD andA are identifiable (i.e., both sen-
sitive and certain) for both study segments (Fig. 8A, B, I, J).
However, both As and a appear somewhat insensitive
(Fig. 8C,D,K, L). Based on the probability distributions gen-
erated from the dotty plots (Fig. 8E–H, M–P), we recom-
mend that As be interpreted only with acknowledgement
of questionable certainty and that a not be interpreted be-
cause it appears both insensitive and uncertain.

This example highlights the utility of OTIS-MCAT for
providing context for the interpretation of parameters and
confirming local uncertainty analyses reported by OTIS-P.
The difference between OTIS-P optimized parameters and
OTIS-MCATparameter estimatesmay be surprising, given
that these approaches use the same data, same model, and
equivalent objective functions. The key difference is the
way these estimates are obtained because each is geared to-
ward a different outcome. OTIS-MCAT conducts a search
of the global parameter space. It may not find a better set
of parameter estimates than OTIS-P because the primary
goal of OTIS-MCAT is to characterize broadly the relation-
ship between parameter estimates and model performance
across a range of plausible values for each parameter. In
contrast, OTIS-P uses an algorithm based on the gradient
between parameter values and model performance to iter-
ate toward a best fit, searching a portion of the parameter
space but geared toward producing a best set of parameter
estimates corresponding to high model performance. Un-
Table 2. Comparison of best-fit transient-storage model parameters and 95% confidence intervals using multiple fitting techniques
for Stringer Creek. Abbreviations are as in Table 1.

Parameter

100 m 2500 m

OTIS-PA OTIS-MCATB OTIS-PA OTIS-MCATB

D (m2/s) 0.0932 (0.0893–0.0970) 0.184 (0.178–0.191) 0.0502 (0.0460–0.0543) 0.109 (0.104–0.113)

A (m2) 0.203 (0.201–0.205) 0.217 (0.214–0.219) 0.0584 (0.0576–0.0592) 0.0619 (0.0610–0.0623)

AS (m
2) 0.0336 (0.0322–0.0351) 1.04 (0.856–1.221) 9.56 � 1023 (8.79 � 1023–10.3 � 1023) 1.098 (0.920–1.276)

a (1023/s) 1.95 (1.79–2.11) 5.16 (3.88–6.44) 0.0596 (0.0499–0.0693) 3.75 (2.62–4.89)
.138.047 on February 07, 2017 02:09:10 AM
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a Optimization with OTIS-P (Runkel 1998) using STARPAC (Donaldson and Tryon 1990). Objective function is minimization of residual sum of
squares.

b Monte-Carlo simulation with OTIS-MCAT. Mean and 95% CI for the mean reported for the top 0.5% of model runs based on minimizing RMSE
between observed and predicted breakthrough curves.
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certainty estimation in this formulation is secondary and is
done after the algorithm has ceased iterating. Thus, these
methods provide different but complementary informa-
tion. We may trust the parameter estimates obtained from
OTIS-P, but OTIS-MCAT is perhaps a better tool for as-
sessing the certainty of those estimates. Likewise, OTIS-P
probably will deliver a parameter estimate with better per-
This content downloaded from 137.222
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formance than any parameter set investigated via OTIS-
MCAT. In short, finding a set of parameters that per-
forms well does not inherently prove they are identifiable
or certain.

Two plausible explanations exist for the observed mis-
match in parameter certainty delivered by these 2 tools.
First, OTIS-P may be converging on a local minimum with
Figure 8. Dotty plots displaying parameter values for D (A, I), A (B, J), As (C, K), and a (D, L) corresponding to model simulations
for experiments in Tenderfoot Creek Experimental Forest at reaches 100 (A–D) and 2500 m (I–L) upstream from the permanent
gauge. For each parameter per reach, dotty plots display parameter values vs RMSE for the top 10% of runs. The mean (vertical
dashed line) and 95% confidence intervals (shaded regions) are shown for OTIS-P optimized parameters (note that the confidence
intervals are extremely narrow). We also show probability density functions for each parameter (E–H, M–P) corresponding to the
top 20, 10, 5, 1, 0.5, and 0.1% of values, as selected by each objective function. The parameter value corresponding to the best objec-
tive function is shown as a grey solid line. Abbreviations are as in Fig. 3.
.138.047 on February 07, 2017 02:09:10 AM
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steep local gradients. The optimization algorithm imple-
mented in OTIS-P would lend itself to locating any steep
gradient within the parameter space. In contrast, OTIS-
MCAT searches broadly and without regard to optimiza-
tion (i.e., a brute force approach to identifying best-fit pa-
rameters). Second, OTIS-MCAT may be undersampling
at the location where OTIS-P converges. A very narrow
“spike” of high likelihood could be missed by the OTIS-
MCAT’s randomgeneration of points. A strategy to test this
case would be to run an additional suite of OTIS-MCAT
simulations with more narrowly defined parameter ranges
around theOTIS-Pbest-fit solution.Theapparent disagree-
ment between the 2 tools indicates that OTIS-P parameters
are generally situated in a position where minor changes do
not strongly effect the model performance. Still, this char-
acteristic is complemented by OTIS-MCAT, thereby en-
abling an understanding of where that parameter range ex-
ists in a global context.

DISCUSSION
Recommendations and synthesis
Best practices in reporting TSM parameters OTIS-MCAT
users have several key considerations when interpreting
model results. First, users should consider whether the full
TSM is required to represent the observed data, or whether
the advection–dispersion equation alone is sufficient. Scott
et al. (2003) demonstrated a technique to assess a model
withandwithout transient-storage terms.OTIS-MCATalso
can be applied to approximate this test by fixing values for
a 5 0. In this case, improved model performance when a
and AS are varied alongside A and D relative to when a
and AS are fixed would indicate that the increase in model
complexity and parameterization requirements is justified
to better represent key processes influencing transient stor-
age within a stream reach.

Second, users must select the objective function(s) for
which they will interpret models. Selection of RMSE as an
objective function will enablemore-direct comparison with
estimates obtained from OTIS-P, given similarity in the
form of RMSE and the objective function used by OTIS-P.
In addition, RMSE probably will give goodmodel fits across
the entire breakthrough curve. For a different objective or
outcome, such as emphasizing accurate prediction of late-
time behavior (e.g., t99), OTIS-MCAT and OTIS-P results
may diverge. This divergence is not an indication that
OTIS-P is incorrect, rather that the optimal parameter val-
ues vary for different objective functions because they em-
phasize or weight different parts of the breakthrough curve.
As such, optimized model parameters must be reported
on the basis of the objective function used to select them.
Not all objective functions will provide the same parameter
estimates, and the best values for one objective function
probably will not correspond to the best values for another
objective function. Thus, reducing uncertainty in one ob-
This content downloaded from 137.222
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jective function may not guarantee a reduction in uncer-
tainty for another objective function. For example, parame-
ters selected for minimizing RMSEmay not minimize error
in t99, whereas optimized parameters for t99 may increase
uncertainty in peak concentration and average arrival time,
and other performancemetrics related to advection and dis-
persion. This situation is evidenced by the nonoverlapping
or minimally overlapping parameter ranges for behavioral
runs in Fig. 7A–D when considering different objective
functions.

Last, we recommend that researchers and practitioners
consider results of global uncertainty analysis within the
context of local uncertainty obtained from optimized pa-
rameter estimates, based on lines of evidence from both
OTIS-P and OTIS-MCAT (Fig. 5A–P). As demonstrated
in the case studies, OTIS-P output contains useful informa-
tion for interpreting parameter best estimates and certainty
with respect to the RSS objective function implicit to the
OTIS-P tool. By interpreting this information alongside
global uncertainty output fromOTIS-MCAT, users can de-
cide whether their parameter values are certain and, there-
fore, interpretable with respect to RMSE/RSS and a broad
range of alternatives. Uncertain parameters should not be
compared across experiments nor further interpreted. A
suite of nonparametric metrics is calculated within OTIS-
MCAT to describe the observed breakthrough curve as
an alternative to reporting TSM parameters. Each of these
summary metrics (e.g., temporal moments, tpeak) can be
used to describe the observed downstream breakthrough
curve without invoking the TSM and its assumptions. Ex-
amples of work based on this strategy can be found in the
literature (Koestel et al. 2011, Mason et al. 2012, Ward
et al. 2013b).
CONCLUSIONS
Across the ecology, biogeochemistry, and hydrology lit-

erature, a need exists to extract meaningful and trustwor-
thy values to describe key transport processes for in- and
near-stream transport. Values for these parameters are reg-
ularly obtained by solute transport modeling with the OTIS
model. However, obtaining reliable estimates for param-
eters when using this method can be complicated. We
addressed this challenge by describing and testing the es-
tablished OTIS-P model, which provides estimates of un-
certainty in OTIS parameters and results, and comparing
it with the new OTIS-MCAT tool that provides a global
Monte-Carlo-based uncertainty estimation process. Thus,
researchers and practitioners have improved ability to ar-
rive at a ‘best-fit’ parameter set that not only represents the
observed data, but corresponds to parameter values (with
associated CIs). Thesemore robust parameter sets will sup-
port defensible conclusions about stream transport pro-
cesses on the basis of the OTIS model parameters.
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