16 research outputs found

    Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms

    Get PDF
    The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals

    Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at s√=13TeV

    Get PDF
    The rate for Higgs (H) bosons production in association with either one (tH) or two (ttÂŻH) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton–proton collisions recorded at a center-of-mass energy of 13TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137fb−1. The analysis is aimed at events that contain H→WW, H→ττ, or H→ZZ decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among tH, ttÂŻH, and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the ttÂŻH and tH signals correspond to 0.92±0.19(stat)+0.17−0.13(syst) and 5.7±2.7(stat)±3.0(syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for ttÂŻH, and to 1.4 (0.3) for tH production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling yt of the Higgs boson to the top quark divided by its SM expectation, Îșt=yt/ySMt, is constrained to be within −0.9<Îșt<−0.7 or 0.7<Îșt<1.1, at 95% confidence level. This result is the most sensitive measurement of the ttÂŻH production rate to date.SCOAP

    Evaluation and optimization of DNA extraction method for <i style="">Dalbergia sissoo </i>leaf

    No full text
    69-73A modified protocol for Dalbergia sissoo genomic DNA isolation has been optimized based on a cetyl trimethyl ammonium bromide (CTAB) method, described for other forest species. Leaves obtained from macro-propagated clones and mature trees of D. sissoo were tested. The method involves mortar grinding of tissue, a modified CTAB extraction buffer incorporating high salt concentrations, polyvinyl pyrrolidone and successive isoamyl alcohol-chloroform extractions with modified temperature conditions. The modification involved the use of doubled concentration of polyvinyl pyrrolidone (4% instead of 2%), increased incubation time with extraction buffer (40 min instead of 30 min), use of freshly prepared CTAB buffer and increased timing of washing of DNA pellet with wash buffer (45 min instead of 30 min). The yield was approximately 100 to 400 ”g DNA per 100 mg of leaf tissue. The genomic DNA obtained by this method was suitable to be used in RAPD and ISSR analysis. This extraction method would allow the molecular analysis of DNA from different clones of D. sissoo

    Genomic DNA isolation and identification of chloroplast microsatellite markers in <i>Asparagus racemosus </i>Willd.<i> </i>through cross-amplification

    No full text
    33-38Cross-species amplification of microsatellite loci is a time saving as well as a cost-effective approach for developing locus specific markers for new species. In an attempt to reveal the genetic variation in different accessions of Asparagus racemosus, chloroplast microsatellite primer pairs developed for Acorus calamus (Acoraceace) were examined for cross-species amplification and validation in A. racemosus. Out of the 18 microsatellite primer pairs screened, 5 i.e. 27.77% (AC-03; AC-05; AC-09; AC-13 and AC-17) yielded good cross-species amplification across 20 different individuals of A. racemosus. These cpSSR markers comprise 1-dinucleotide repeat type; 2-trinucleotide and 2-tetranucleotide repeat types. The product size of the amplified cpSSR primers ranged between 180 and 337 bp. All the 5 cross-amplified cpSSR markers were found polymorphic across the 20 individuals of A. racemosus. Besides this an easy and competent protocol for the extraction of high quality genomic DNA in A. racemosus for the PCR-based microsatellite marker analysis has been also reported. The DNA extraction protocol involved a modification of CTAB procedure given by Stange et al, which includes the use of high concentrations of polyvinyl pyrrolidone (PVP), addition of 8 M lithium chloride in extraction buffer; a repeated chloroform:isoamyl alcohol step and washing of DNA pellets with the wash buffer and with the 80% ethanol. The developed protocol yielded approximately ~77.30 ÎŒg DNA per 100 mg plant tissue with the purity ratio of ~1.85 at A260/A280 nm wavelength. Following the protocol and using the primers, genetic diversity analysis in A. racemosus was carried out

    An unusual cause of recurrent tonsillitis

    No full text
    Primary tuberculosis of the oral cavity and oropharynx is quite uncommon, and primary isolated tuberculosis of the tonsils is extremely rare. We report a case of primary tonsillar tuberculosis, in an otherwise healthy man, mimicking chronic non-specific tonsillitis
    corecore