58 research outputs found

    Large Scale Assembly and Characterization of BI-2223 HTS Conductors

    Get PDF
    The powering of the LHC machine requires more than 1000 High Temperature Superconducting (HTS) current leads. These leads contain, at their cold end, HTS conductors made of stacks of Bi-2223 tape with gold-doped silver matrix. CERN specified and purchased 31 km of this material, which was delivered on spools in unit lengths of 100 to 300 m. On reception the tape was inspected, cut into short length and vacuum soldered into stacks. All stacks were characterized in liquid nitrogen using a measuring procedure and set-up specifically developed for this purpose. Contact resistance values and critical currents at different electric field criteria were measured, from which the n-values have been extrapolated from the experimental V-I characteristics. This paper reports on the assembly and electrical characterization (up to 800 A) of more than ten thousand Bi-2223 stacks. Three types of stack were made from tape from two manufacturers. The assembly and soldering procedures and the set-up for the series electrical characterization are described. An analysis of the measured data is presented, with particular regard to the homogeneity of the electrical properties of both the tape and the derived stacks

    RF and accelerating structure of 12 MeV UPC race-track microtron

    Get PDF
    We describe the design and technical characteristics of a C-band SW accelerating structure of a 12 MeV race-track microtron, which is under construction at the Technical University of Catalonia, and its RF system with a 5712 MHz magnetron as a source. Results of cold tests of the accelerating structure, before and after the brazing, and of high-power tests of the RF system at a special stand are reported. The main features of the magnetron frequency stabilization subsystem are also outlined.Postprint (published version

    Novel design of a parallax free Compton enhanced PET scanner

    Get PDF
    Molecular imaging by PET is a powerful tool in modern clinical practice for cancer diagnosis. Nevertheless, improvements are needed with respect to the spatial resolution and sensitivity of the technique for its application to specific human organs (breast, prostate, brain, etc.), and to small animals. Presently, commercial PET scanners do not detect the depth of interaction of photons in scintillators, which results in a not negligible parallax error. We describe here a novel concept of PET scanner design that provides full three-dimensional (3D) gamma reconstruction with high spatial resolution over the total detector volume, free of parallax errors. It uses matrices of long scintillators read at both ends by hybrid photon detectors. This so-called 3D axial concept also enhances the gamma detection efficiency since it allows one to reconstruct a significant fraction of Compton scattered events. In this note, we describe the concept, a possible design and the expected performance of this new PET device. We also report about first characterization measurements of 10 cm long YAP:Ce scintillation crystals. r 2004 Elsevier B.V. All rights reserved

    Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Get PDF
    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes

    Synergistic HNO3_{3}–H2_{2}SO4_{4}–NH3_{3} upper tropospheric particle formation

    Get PDF
    New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)1,2,3,4^{1,2,3,4}. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3_{3}–H2_{2}SO4_{4}–NH3_{3} nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere

    Molecular understanding of the suppression of new-particle formation by isoprene

    Get PDF
    Nucleation of atmospheric vapours produces more than half of global cloud condensation nuclei and so has an important influence on climate. Recent studies show that monoterpene (C10H16) oxidation yields highly oxygenated products that can nucleate with or without sulfuric acid. Monoterpenes are emitted mainly by trees, frequently together with isoprene (C5H8), which has the highest global emission of all organic vapours. Previous studies have shown that isoprene suppresses new-particle formation from monoterpenes, but the cause of this suppression is under debate. Here, in experiments performed under atmospheric conditions in the CERN CLOUD chamber, we show that isoprene reduces the yield of highly oxygenated dimers with 19 or 20 carbon atoms - which drive particle nucleation and early growth - while increasing the production of dimers with 14 or 15 carbon atoms. The dimers (termed C-20 and C-15, respectively) are produced by termination reactions between pairs of peroxy radicals (RO2 center dot) arising from monoterpenes or isoprene. Compared with pure monoterpene conditions, isoprene reduces nucleation rates at 1.7 nm (depending on the isoprene = monoterpene ratio) and approximately halves particle growth rates between 1.3 and 3.2 nm. However, above 3.2 nm, C-15 dimers contribute to secondary organic aerosol, and the growth rates are unaffected by isoprene. We further show that increased hydroxyl radical (OH center dot) reduces particle formation in our chemical system rather than enhances it as previously proposed, since it increases isoprene-derived RO2 center dot radicals that reduce C-20 formation. RO2 center dot termination emerges as the critical step that determines the highly oxygenated organic molecule (HOM) distribution and the corresponding nucleation capability. Species that reduce the C-20 yield, such as NO, HO2 and as we show isoprene, can thus effectively reduce biogenic nucleation and early growth. Therefore the formation rate of organic aerosol in a particular region of the atmosphere under study will vary according to the precise ambient conditions.Peer reviewe
    • …
    corecore