29 research outputs found

    Quantum transport at the Dirac point: Mapping out the minimum conductivity from pristine to disordered graphene

    Get PDF
    The phase space for graphene's minimum conductivity σmin\sigma_\mathrm{min} is mapped out using Landauer theory modified for scattering using Fermi's Golden Rule, as well as the Non-Equilibrium Green's Function (NEGF) simulation with a Monte Carlo sampling over impurity distributions. The resulting `fan diagram' spans the range from ballistic to diffusive over varying aspect ratios (W/LW/L), and bears several surprises. {The device aspect ratio determines how much tunneling (between contacts) is allowed and becomes the dominant factor for the evolution of σmin\sigma_{min} from ballistic to diffusive regime. We find an increasing (for W/L>1W/L>1) or decreasing (W/L<1W/L<1) trend in σmin\sigma_{min} vs. impurity density, all converging around 128q2/π3h∼4q2/h128q^2/\pi^3h\sim 4q^2/h at the dirty limit}. In the diffusive limit, the {conductivity} quasi-saturates due to the precise cancellation between the increase in conducting modes from charge puddles vs the reduction in average transmission from scattering at the Dirac Point. In the clean ballistic limit, the calculated conductivity of the lowest mode shows a surprising absence of Fabry-P\'{e}rot oscillations, unlike other materials including bilayer graphene. We argue that the lack of oscillations even at low temperature is a signature of Klein tunneling

    An mRNA vaccine for pancreatic cancer designed by applying in silico immunoinformatics and reverse vaccinology approaches

    Get PDF
    Pancreatic ductal adenocarcinoma is the most prevalent pancreatic cancer, which is considered a significant global health concern. Chemotherapy and surgery are the mainstays of current pancreatic cancer treatments; however, a few cases are suitable for surgery, and most of the cases will experience recurrent episodes. Compared to DNA or peptide vaccines, mRNA vaccines for pancreatic cancer have more promise because of their delivery, enhanced immune responses, and lower proneness to mutation. We constructed an mRNA vaccine by analyzing S100 family proteins, which are all major activators of receptors for advanced glycation end products. We applied immunoinformatic approaches, including physicochemical properties analysis, structural prediction and validation, molecular docking study, in silico cloning, and immune simulations. The designed mRNA vaccine was estimated to have a molecular weight of 165023.50 Da and was highly soluble (grand average of hydropathicity of -0.440). In the structural assessment, the vaccine seemed to be a well-stable and functioning protein (Z score of -8.94). Also, the docking analysis suggested that the vaccine had a high affinity for TLR-2 and TLR-4 receptors. Additionally, the molecular mechanics with generalized Born and surface area solvation analysis of the "Vaccine—TLR-2" (-141.07 kcal/mol) and "Vaccine—TLR-4" (-271.72 kcal/mol) complexes also suggests a strong binding affinity for the receptors. Codon optimization also provided a high expression level with a GC content of 47.04% and a codon adaptation index score 1.0. The appearance of memory B-cells and T-cells was also observed over a while, with an increased level of helper T-cells and immunoglobulins (IgM and IgG). Moreover, the minimum free energy of the mRNA vaccine was predicted at -1760.00 kcal/mol, indicating the stability of the vaccine following its entry, transcription, and expression. This hypothetical vaccine offers a groundbreaking tool for future research and therapeutic development of pancreatic cancer
    corecore