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Abstract

Pancreatic ductal adenocarcinoma is the most prevalent pancreatic cancer, which is consid-

ered a significant global health concern. Chemotherapy and surgery are the mainstays of cur-

rent pancreatic cancer treatments; however, a few cases are suitable for surgery, and most

of the cases will experience recurrent episodes. Compared to DNA or peptide vaccines,

mRNA vaccines for pancreatic cancer have more promise because of their delivery,

enhanced immune responses, and lower proneness to mutation. We constructed an mRNA

vaccine by analyzing S100 family proteins, which are all major activators of receptors for

advanced glycation end products. We applied immunoinformatic approaches, including phys-

icochemical properties analysis, structural prediction and validation, molecular docking

study, in silico cloning, and immune simulations. The designed mRNA vaccine was estimated

to have a molecular weight of 165023.50 Da and was highly soluble (grand average of hydro-

pathicity of -0.440). In the structural assessment, the vaccine seemed to be a well-stable and

functioning protein (Z score of -8.94). Also, the docking analysis suggested that the vaccine

had a high affinity for TLR-2 and TLR-4 receptors. Additionally, the molecular mechanics with

generalized Born and surface area solvation analysis of the "Vaccine—TLR-2" (-141.07 kcal/

mol) and "Vaccine—TLR-4" (-271.72 kcal/mol) complexes also suggests a strong binding

affinity for the receptors. Codon optimization also provided a high expression level with a GC

content of 47.04% and a codon adaptation index score 1.0. The appearance of memory B-

cells and T-cells was also observed over a while, with an increased level of helper T-cells and

immunoglobulins (IgM and IgG). Moreover, the minimum free energy of the mRNA vaccine

was predicted at -1760.00 kcal/mol, indicating the stability of the vaccine following its entry,

transcription, and expression. This hypothetical vaccine offers a groundbreaking tool for

future research and therapeutic development of pancreatic cancer.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC), which constitutes 90% of pancreatic cancer (PC),

is the fourth most prevalent cause of cancer-related mortality globally [1]. A study suggests

that by 2030, the number of deaths in the US from PC will surpass that from breast, prostate,

and colorectal cancer combined, partly as a result of improvements in the treatment of other

cancers and an aging population [2]. In a recent study by the American Cancer Society (ACS)

[3], the overall 5-year survival rate for PC is dramatically low, estimated at around 12%. The

poor survival rate may be attributed to several factors, one of which is the late stage at which

most patients are diagnosed [4]. Identifying the early stage of PC is challenging as there is a

scarcity of symptoms and biomarkers that are precise to it [5]. In most cases, patients have

already reached an incurable advanced stage by the time they exhibit symptoms and are diag-

nosed [5]. PDAC is primarily treated with chemotherapy and surgery, but because of distant

metastasis at the diagnosis stage, the eligibility for surgical intervention is confined to a range

of 15%-20% of patients [5]. Even when surgery is an alternative, approximately three-quarters

of patients will have a recurrence within two years of surgery. Another developing approach

for PC is neoadjuvant therapy, particularly for borderline and locally advanced unresectable

cases [6]. Unfortunately, the randomized trial for neoadjuvant chemoradiotherapy in PC had

to be stopped prematurely due to insufficient patient enrollment and outcomes that did not

show statistical significance [7]. Based on different clinical and preclinical studies, mRNA-

based therapeutics were found equal to or more effective than DNA or peptide platforms in

delivering cancer vaccines [8]. The mRNA approach is adaptable and has effectively been

employed in various vaccine delivery strategies, including systemic, subcutaneous, intramus-

cular, and in situ methods, as well as in genetically modifying dendritic cell-based vaccines

and developing chimeric antigen receptor (CAR) T-cell therapies [8]. Also, mRNA-driven can-

cer vaccines encode complete cancer antigens, overcoming human leukocyte antigen restric-

tions for a wider immune reaction and remaining mutation-free due to mRNA’s inability to

integrate into chromosomes [9].

Recent studies suggest that receptor for advanced glycation endproducts (RAGE) plays a

significant role in the advancement of PC and might serve as a promising target for therapeutic

interventions [10]. However, RAGE may be triggered by many members of the S100 protein

family alongside being activated by other ligands [11]. S100 proteins are of notable importance

in developing vaccines for PC, considering their unique attributes and implications for the

progression of the disease [11, 12]. These proteins frequently appear in higher concentrations

in PC tissues, serving as robust biomarkers for disease detection and prognosis. Their abnor-

mal expression identifies malignant cells and contributes to their prospective targets for

immunotherapeutic interventions [11, 12]. This offers the potential to develop vaccines that

aim to stimulate an immune response against malignant tissues while excluding healthy ones.

The S100 protein family consists of 21 members, which have a significant degree of structural

similarity and regulate cellular responses by serving as both intracellular calcium (Ca2+) sen-

sors and extracellular factors [13]. Among the different proteins, S100A4 is considered a risk

factor for PC [14, 15], which does not express in normal tissues but is highly expressed in PC

cells and related to the tumor-node-metastasis (TNM) staging and tumor size in PC [12].

S100A6 is a biomarker in PC lesions restricted to the nuclei in PC cells but not in the noncan-

cerous tissues [16, 17]. S100A8 and S100A9 are two overexpressed proteins that are potential

inflammatory mediators occurring in PDAC immunosuppression and suppress T-cell activa-

tion [18]. S100A11 is another potential gene therapy target, overexpressed in PC cells, and

facilitates the PDAC interstitium and promotes PDAC growth [19].
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In this study, we aimed to design a novel mRNA vaccine targeting five members of the S100

family protein, S100-A4, S100-A6, S100-A8, S100-A9, and S100-A11, which consists of cyto-

toxic T lymphocyte (CTL), helper T lymphocyte (HTL), linear B-cell epitopes derived from the

selected proteins. With a combination of highly immunogenic adjuvants such as Heparin-

binding hemagglutinin (HBHA) and five additional linkers, namely EAAAK, AYY, AK,

KFER, and GPGPG, we designed the vaccine construct applying the immunoinformatic and

computational strategies.

2. Methods

2.1 Retrieval of protein sequence

Amino acid sequences of the following proteins, S100-A4 (accession number: P26447.1),

S100-A6 (accession number: P06703.1), S100-A8 (accession number: P05109.1), S100-A9

(accession number: P06702.1), S100-A11 (accession number: P31949.2) were retrieved from

National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) pro-

tein database and saved in FASTA format. The FASTA sequences were subsequently utilized

for vaccine development. The summary of the study is depicted in Fig 1.

2.2 Cytotoxic T lymphocyte (CTL) epitope prediction

The Immune Epitope Database (IEDB) server (http://tools.iedb.org/mhci/) was applied to pre-

dict CTL epitopes from the intended protein sequences [20–30]. The server predicts CTL epi-

topes from a protein sequence based on affinity for major histocompatibility complex- I

(MHC-I), the transportation efficiency (TAP), and the cleavage of the proteasome [21, 31]. We

Fig 1. An overview of the study.

https://doi.org/10.1371/journal.pone.0305413.g001
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choose 12 MHC- I binding alleles, including HLA-A1, HLA-A2, HLA-A3, HLA-A24,

HLA-A26, HLA-B7, HLA-B8, HLA-B27, HLA-B39, HLA-B44, HLA-B58, and HLA-B62 and

applied the IEDB recommended method (NetMHCpan 4.1 EL) for this prediction. The pre-

dicted epitopes were further assessed for immunogenicity, antigenicity and toxicity through

different validation tools like the IEDB class I immunogenicity (http://tools.iedb.org/

immunogenicity/) [32, 33], Vaxijen v2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/

VaxiJen.html) [34] and ToxinPred Server (http://crdd.osdd.net/raghava/toxinpred/) [35, 36],

respectively. The prediction threshold value was set to 0.5 for both Vaxijen v2.0 and ToxinPred

server. However, the Vaxijen v2.0 has a prediction accuracy of 70% to 89%, while ToxinPred

has a prediction accuracy of 94.50%.

2.3 Helper T lymphocyte (HTL) epitope prediction

The HTLs are recognized as having a variety of functions, including regulating T- and B-cells,

identifying antigens through Major histocompatibility complex-II (MHC-II) on antigen-pre-

senting cell (APC), helping in T-cell-mediated immunity, and so on [37]. Therefore, HTLs are

crucial in developing adaptive immune responses [37]. Furthermore, the HTL epitope is criti-

cal for efficient vaccine development since vaccine antigen (Ag) is processed to be delivered

via MHC-II [38, 39]. The IEDB MHC-II binding server was applied to screen HTL epitopes

from intended protein sequences. The program was run by IEDB recommended method with

13 different MHC-II alleles, including HLA-DRB1-0101, HLA-DRB1-0301, HLA-DRB1-0401,

HLA-DRB1-0701, HLA-DRB1-0801, HLA-DRB1-0901, HLA-DRB1-1001, HLA-DRB1-1101,

HLA-DRB1-1201, HLA-DRB1-1301, HLA-DRB1-1401, HLA-DRB1-1501, and HLA-DRB1-

1601. All the selected epitopes were further applied for the in silico assessment of interleukin-

10 (IL-10) and interferon-gamma (IFN-γ) through IL-10Pred (http://crdd.osdd.net/raghava/

IL-10pred/) and IFNepitope (http://crdd.osdd.net/raghava/ifnepitope/predict.php), respec-

tively. However, the threshold value was set to -0.3 while predicting with IL-10pred, but it was

set to 0.5 in the case of INFepitope. Additionally, the antigenicity and toxicity were also evalu-

ated by Vaxijen v2.0 [34] and ToxinPred server [35, 36] with a threshold value of 0.5.

2.4 B-cell (linear) epitope prediction

The linear B-cell epitopes of the targeted proteins were predicted by the IEDB (http://tools.

iedb.org/bcell/) and the Bepipred 2.0 (http://www.cbs.dtu.dk/services/BepiPred/) server [40].

To predict linear B-cell epitopes, the IEDB employs a combination of sequence features of the

antigen, amino acid scales, Emini surface accessibility, and the Hidden Markov model (HMM)

approach [41]. Meanwhile, the BepiPred 2.0 server utilizes an HMM and a propensity scale

approach, which has a predicted accuracy of 73% [40]. In both instances, the threshold value

was set as 0.5. Subsequently, the epitopes were assessed for allergenicity and antigenicity

through the AllergenFP v.1.0 (http://ddg-ph armfac.net/AllergenFP/) [42] and VaxiJen 2.0

server (http://www.ddg-ph armfac.net/vaxijen/VaxiJen/VaxiJen.html), respectively [34].

2.5 Mapping the vaccine construct

All selected (CTL, HTL, and B-cell) epitopes from S100-A4, S100-A6, S100-A8, S100-A9, and

S100-A11 proteins were utilized to construct the vaccine. The selected epitopes were linked

together to develop a complete vaccine with recognized adjuvants and suitable linkers. Hepa-

rin-binding hemagglutinin (HBHA) (A5TZK3: HBHA_MYCTA) was added as an adjuvant,

while five different types of linkers were used to connect the chosen epitopes: EAAAK, AYY,

AK, KFER, and GPGPG [43, 44].
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2.6 Evaluation of physicochemical properties, solubility, allergenicity, and

antigenicity

The physicochemical characteristics of the vaccine were assessed following its construction by

Expasy’s ProtParam (http://web.expasy.org/protparam/) server. These properties include the

total amino acid count, composition and constitute of atoms, molecular weight and formula,

total positive and negative residues, stability and aliphatic index, isoelectric point (pI), as well

as extinction coefficients and grand average of hydropathicity (GRAVY) [45]. The allergenicity

of the vaccine was evaluated by using the AllerTOP v. 2.0 server (https://www.ddg-pharmfac.

net/AllerTOP/), which has a prediction accuracy of 85.3% [46]. Alongside, the antigenicity of

the vaccine was also assessed by ANTIGENpro (http://scratch.proteomics.ics.uci.edu) (predic-

tion accuracy of 82%) [47] and VaxiJen 2.0 (http://www.ddg-pharmfac.net/vaxijen/ VaxiJen/

VaxiJen.html) (prediction accuracy of 70% to 89%) server [34]. In this analysis, the threshold

value was set by default setting (0.5). Finally, the solubility of the vaccine was also evaluated

by SOLpro (http://scratch.proteomics.ics.uci.edu) (prediction accuracy of 74%) [48–50]

and Protein-Sol server (https://protein-sol.manchester.ac.uk/) (prediction accuracy of 58%)

[50, 51].

2.7 Secondary structure prediction

The PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/), GOR4 (https://npsa-prabi.ibcp.fr/cgi-bin/

npsa_automat.pl?page=/NPSA/npsa_gor4.html) and SOPMA (https://npsa-prabi.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html) servers were applied to predict and

assess the secondary structure of the vaccine [52]. With an accuracy of 84.2%, the PSIPRED

predicts the secondary structure of a protein via neural network and PSI-BLAST (position-spe-

cific iterated BLAST) [53, 54]. The GOR4 server utilizes both information theory and Bayesian

statistics, while the SOPMA uses a neural network to predict the secondary structure with an

accuracy of 73.5% [55] and 69.5%, respectively [56]. The FASTA sequence was used to deter-

mine the secondary structure in the server mentioned above.

2.8 Tertiary structure prediction and validation

The I-TASSER server (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) predicted the vac-

cine’s tertiary structure (3D). The server utilizes various threading alignments and repeated

template segment assembly simulations to determine a protein’s most accurate and precise ter-

tiary structure [29, 44, 57, 58]. The server measures the structure’s confidence score (C-score)

when assessing the quality of any predicted 3D model. Since an improved C-score signifies the

highest quality or level of confidence of a predicted 3D model. Alongside, the template model-

ing score (TM-score) and root mean square deviation (RMSD) are typical measures of protein

structure similarity, whereas subordinate values provide greater resolution and more accurate

3D model fits [44, 57, 59]. In terms of model prediction accuracy, the I-TASSER models may

have an average error of 2 Å for RMSD and 0.08 for TM-score [60]. Consequently, the pre-

dicted 3D model of the vaccine was employed for structural refinement through the Galaxy-

WEB (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE) server [61]. Further

validation of the model was accomplished by the SAVES v6.0 server (https://saves.mbi.ucla.

edu/). The server provides a Ramachandran plot, which defines the stereochemical quality of

the predicted vaccine model [62–65]. To identify the structural accuracy of the predicted 3D

model structure, we applied the ProSA-web server (https://prosa.services.came.sbg.ac.at/prosa.

php). The server provides a Z-score for a predicted 3D model structure, which signifies the

accuracy and the potential errors of the model structure [66, 67].
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2.9 Molecular docking study of the vaccine-TLR receptor

The vaccine must effectively interact with the host’s immunological receptors to elicit a robust

immune response. Therefore, protein-protein docking was used to predict the interaction of

multi-epitope vaccines with immune receptors, toll-like receptor-2 (TLR-2) and TLR-4. The

3D structure of the vaccine and TLR-2 (PDB ID: 2Z7X) or TLR-4 (PDB ID: 3FXI) were applied

to docking using the ClusPro 2.0 server (https://cluspro.bu.edu/login.php), which has a dock-

ing accuracy of ~71% [68–72]. However, both TLR-2 and TLR-4 have essential functions in

vaccine-induced immunity [73]. These receptors can identify pathogen-associated molecular

patterns (PAMPs) and initiate innate and adaptive immune responses. The TLR-2 mainly

detects lipoproteins and lipopeptides, while the TLR-4 specifically detects lipopolysaccharides

(LPS) [74]. Activating the TLR-2 and TLR-4 by vaccine components triggers a cascade of

events that ultimately enhance adaptive immune responses. This includes improved antigen

presentation, cytokine generation, and dendritic cell maturation. These processes, in turn, lead

to increased antibody synthesis, T-cell activation, and the establishment of immunological

memory, all of which significantly improve the effectiveness of vaccination [73, 74]. PyMOL

(https://pymol.org/2/) and PDBsum (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/

Generate.html) servers were used to analyze and visualize docked complex structures.

2.10 Free energy calculation by molecular mechanics with generalized Born

and surface area solvation (MM-GBSA)

The free energy associated with the interaction between the "Vaccine—TLR-2" and "Vaccine—

TLR-4" was calculated using MM-GBSA methodologies based on molecular mechanics and

the Generalised Born approach. The molecular mechanics approaches under consideration

include the influences stemming from bound interactions, van der Waals forces (VDW), elec-

trostatic interactions (ELE), as well as polar (GB) and non-polar (SA) components [75–77].

The polar solvation component is calculated using the Generalised Born equation on the

HawkDock server [75–77]. However, the accuracy of the MM-GBSA was reported to be

95.35% and 81.40% for the crystal and predicted structures, respectively [78].

2.11 Prediction of B-cell (discontinuous) epitopes

To predict the possible discontinuous B-cell epitopes of the vaccine, we applied the Ellipro of

the IEDB database (http://tools.iedb.org/ellipro/) [79]. With the area under the ROC curve

(AUC) value of 0.732 and prediction accuracy of 70%, the server utilizes three different algo-

rithms to predict all possible discontinuous B-cell epitopes of the vaccine through their protru-

sion index (PI) values to illustrate an ellipsoidal protein shape and to quantify the residue PI

and neighboring cluster residues [44, 79]. The selection parameters were set to default setting

as a minimum score of 0.5 and a maximum distance of 6Å [79].

2.12 Codon adaptation and in silico cloning

The Java Codon Adaptation tool was employed to perform codon optimization of the vaccine

for in silico cloning (http://www.jcat.de/) [80]. Therefore, we choose the Escherichia coli K12

strain as an expression vector for the vaccine. The codon adaptation index (CAI) value and

GC content of the adapted sequence were also collected. Subsequently, the nucleotide sequence

adapted to be compatible with the vaccine was introduced into the pET28a(+) vector through

the restriction cloning module of the SnapGene software (https://www.snapgene.com/free-

trial/). PshAI and Acc65I restriction sites were introduced to ensure suitable insertion into the

plasmid.
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2.13 Immune simulation

To perform the immune stimulation of the vaccine, the C-ImmSim server (https://kraken.iac.

rm.cnr.it/C-IMMSIM/) was employed [81]. The server predicts the possible immune response

of a mammalian immune system encountered by a vaccine injection. Both the humoral (anti-

body-mediated) and cellular (cell-mediated) responses were evaluated by this server [80, 82].

For the vaccine, a three-dose vaccination regime with a four-week interval was chosen. Never-

theless, the simulation parameters were configured with the default values, where the number

of adjuvants and antigen injections were set to 100 and 1000, respectively [44]. Additionally,

the time steps were defined as 1, 84, and 168, where each time step corresponds to 8 hours dur-

ing daily life. Alongside, the simulation’s volume and steps were adjusted at 50 and 1000,

respectively [44]. Without the interference of lipopolysaccharides (LPS), the random seed was

set as 12345.

2.14 Structural validation of the mRNA vaccine

The secondary structure of the mRNA vaccine was predicted by the RNAfold (http://rna.tbi.

univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) web server [83]. The server can calculate the

thermodynamically derived minimum free energy (MFE) of the query mRNA structures with

an accuracy of 70% [84–86]. However, the energy parameters were set to default settings: a

temperature of 37˚C and a 1.021 molar (M) salt concentration. Upon acquiring the optimized

DNA sequence via the JCat server, it was then transformed into a possible DNA sequence

through the process of DNA<->RNA->Protein conversion at http://biomodel.uah.es/en/lab/

cybertory/analysis/trans.htm. This was carried out to facilitate the analysis of mRNA folding

and the secondary structure of the vaccine.

3. Result

3.1 Retrieval of protein sequence

The amino acid sequences of the proteins S100-A4, S100-A6, S100-A8, S100-A9, and

S100-A11 were obtained from the NCBI protein database. These retrieved sequences were

employed for further analysis.

3.2 Cytotoxic T lymphocyte (CTL) epitope prediction

CTL epitopes for five proteins were predicted through the IEDB web server based on their

percentile rank (<1.0) and combined score (<1.0). Finally, a total of 73 epitopes were

selected following the criteria: percentile rank and combined score <1.0, where 15 epitopes

for S100-A4, 13 epitopes for S100-A6, 16 epitopes for protein S100-A8, 11 epitopes for pro-

tein S100-A9 and 18 epitopes for protein S100-A11. However, the epitopes were confined to

12 alleles (HLA-A1, HLA-A2, HLA-A3, HLA-A24, HLA-A26, HLA-B7, HLA-B8, HLA-B27,

HLA-B39, HLA-B44, HLA-B58 and HLA-B62). The epitopes were assessed for immunoge-

nicity, toxicity, and antigenicity, where they were found to be immunogenic, non-toxic, and

antigenic (Table 1).

3.3 Helper T lymphocyte (HTL) epitope prediction

HTL binding epitopes for the five proteins were predicted through the IEDB web server based

on percentile rank<1.0 and screened out that can induce IFN-γ, IL-4, and IL-10 cytokines.

Among the 15 selected HTL epitopes, seven were IL-4 non-inducers (non-positive value), and

eight were negative to the production of IFN-γ (non-positive value). All of them were found to

be IL-10 inducers with positive IL10 scores. Antigenicity, toxicity, and allergenicity were also
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Table 1. The predicted CTL epitope with their immunogenicity, toxicity, and antigenicity.

Protein Peptides Combined score Immunogenicity score Toxicity Antigenicity Alleles

S100-A4 STFHKYSGK 0.936641 -0.26275 Non-toxic Probable antigen 12

DEAAFQKLM 0.806402 -0.13145 Non-toxic Probable antigen 12

NKSELKELL 0.621016 -0.08873 Non-toxic Probable antigen 12

RTDEAAFQK 0.286784 0.214 Non-toxic Probable antigen 12

VMVSTFHKY 0.295864 -0.10377 Non-toxic Probable antigen 12

FLGKRTDEA 0.002737 -0.04184 Non-toxic Probable antigen 12

DNEVDFQEY 0.187505 0.16658 Non-toxic Probable antigen 12

YSGKEGDKF 0.103906 -0.18388 Non-toxic Probable antigen 12

FQKLMSNL 0.121941 0.21434 Non-toxic Probable antigen 12

LKELLTREL 0.288341 0.14926 Non-toxic Probable antigen 12

FKLNKSEL 0.018919 0.03509 Non-toxic Probable antigen 12

ALDVMVSTF 0.169291 -0.20034 Non-toxic Probable antigen 12

IAMMCNEFF 0.190912 -0.13939 Non-toxic Probable antigen 12

SELKELLTR 0.075372 -0.12022 Non-toxic Probable antigen 12

LTRELPSFL 0.121941 0.02509 Non-toxic Probable antigen 12

S100-A6 KELTIGSKL 0.761632 -0.06866 Non-toxic Probable antigen 12

GREGDKHTL 0.585583 -0.06482 Non-toxic Probable antigen 12

GLLVAIFHK 0.665857 0.31902 Non-toxic Probable antigen 12

KHTLSKKEL 0.408604 -0.48616 Non-toxic Probable antigen 12

AIFHKYSGR 0.544552 -0.26275 Non-toxic Probable antigen 12

LQDAEIARL 0.288341 0.33261 Non-toxic Probable antigen 12

NFQEYVTFL 0.236661 0.19957 Non-toxic Probable antigen 12

TFLGALALI 0.204377 0.0847 Non-toxic Probable antigen 12

ALIYNEALK 0.375627 0.15397 Non-toxic Probable antigen 12

CPLDQAIGL 0.196504 0.07487 Non-toxic Probable antigen 12

LKELIQKEL 0.130868 -0.0816 Non-toxic Probable antigen 12

ARLMEDLDR 0.248374 -0.05832 Non-toxic Probable antigen 12

EYVTFLGAL 0.0852 0.20748 Non-toxic Probable antigen 12

S100-A8 SIIDVYHKY 0.977923 0.00354 Non-toxic Probable antigen 12

YRDDLKKLL 0.89043 -0.37276 Non-toxic Probable antigen 12

KYSLIKGNF 0.844018 -0.11344 Non-toxic Probable antigen 12

FHAVYRDDL 0.639914 0.13104 Non-toxic Probable antigen 12

LLETECPQY 0.687787 0.04127 Non-toxic Probable antigen 12

KMGVAAHKK 0.730005 0.02877 Non-toxic Probable antigen 12

SLIKGNFHA 0.672529 -0.02919 Non-toxic Probable antigen 12

ALNSIIDVY 0.372198 0.12915 Non-toxic Probable antigen 12

IRKKGADVW 0.553195 -0.17433 Non-toxic Probable antigen 12

MLTELEKAL 0.459766 0.03766 Non-toxic Probable antigen 12

LETECPQYI 0.124868 -0.04951 Non-toxic Probable antigen 12

NTDGAVNFQ 0.106585 0.1812 Non-toxic Probable antigen 12

SIIDVYHKY 0.977923 0.00354 Non-toxic Probable antigen 12

YRDDLKKLL 0.89043 -0.37276 Non-toxic Probable antigen 12

KYSLIKGNF 0.844018 -0.11344 Non-toxic Probable antigen 12

TIINTFHQY 0.945906 0.14431 Non-toxic Probable antigen 12

(Continued)
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assessed to select the predicted epitopes for the multi-epitope vaccine construction. We found

that 15 epitopes showed antigenicity, non-toxic, and non-allergen activity (Table 2). However,

the epitopes were confined to 13 alleles including HLA-DRB1-0101, HLA-DRB1-0301,

HLA-DRB1-0401, HLA-DRB1-0701, HLA-DRB1-0801, HLA-DRB1-0901, HLA-DRB1-1001,

HLA-DRB1-1101, HLA-DRB1-1201, HLA-DRB1-1301, HLA-DRB1-1401, HLA-DRB1-1501,

and HLA-DRB1-1601.

3.4 B-cell (linear) epitope prediction

A total of 13 linear B-cell epitopes were chosen through the IEDB and the Bepipred 2.0 servers.

Two peptide sequences from each protein, three from S100-A4, two from S100-A6, two from

S100-A8, three from S100-A9, and three peptide sequences from S100-A11, were selected

based on a bepipred score of> 0.5. The peptide sequences were evaluated for their allergenic-

ity and antigenicity using the AllergenFP v.1.0 server and VaxiJen 2.0 server, respectively

(Table 3). All of them were found to be probable non-allergens and antigens. However, the

peptide sequences’ length varied from 8 to 35.

Table 1. (Continued)

Protein Peptides Combined score Immunogenicity score Toxicity Antigenicity Alleles

S100-A9 RLTWASHEK 0.7835 0.20366 Non-toxic Probable antigen 12

VRKDLQNFL 0.768595 -0.10458 Non-toxic Probable antigen 12

IMLMARLTW 0.762326 -0.08016 Non-toxic Probable antigen 12

VKLGHPDTL 0.466855 0.09296 Non-toxic Probable antigen 12

KENKNEKVI 0.377743 -0.28903 Non-toxic Probable antigen 12

TFHQYSVKL 0.354928 -0.35655 Non-toxic Probable antigen 12

NEKVIEHIM 0.416022 0.30045 Non-toxic Probable antigen 12

TNADKQLSF 0.14122 -0.39004 Non-toxic Probable antigen 12

LTWASHEKM 0.018919 -0.06088 Non-toxic Probable antigen 12

LSFEEFIML 0.015393 0.35617 Non-toxic Probable antigen 12

HQYSVKLGH 0.016441 -0.32003 Non-toxic Probable antigen 12

S100-A11 AVFQKYAGK 0.93067 -0.23922 Non-toxic Probable antigen 12

GVLDRMMKK 0.945216 -0.37038 Non-toxic Probable antigen 12

SLIAVFQKY 0.705995 0.00921 Non-toxic Probable antigen 12

NYTLSKTEF 0.765387 -0.2714 Non-toxic Probable antigen 12

FLSFMNTEL 0.811116 -0.02173 Non-toxic Probable antigen 12

FLKAVPSQK 0.788539 -0.20817 Non-toxic Probable antigen 12

GKDGYNYTL 0.627267 0.05117 Non-toxic Probable antigen 12

GQLDFSEFL 0.649201 0.12989 Non-toxic Probable antigen 12

LSKTEFLSF 0.72244 0.07074 Non-toxic Probable antigen 12

YAGKDGYNY 0.494122 -0.1594 Non-toxic Probable antigen 12

NLIGGLAMA 0.597566 0.03028 Non-toxic Probable antigen 12

CHDSFLKAV 0.300219 -0.21485 Non-toxic Probable antigen 12

SPTETERCI 0.218583 0.25758 Non-toxic Probable antigen 12

RCIESLIAV 0.189165 0.10759 Non-toxic Probable antigen 12

STFHKYSGK 0.936641 -0.26275 Non-toxic Probable antigen 12

DEAAFQKLM 0.806402 -0.13145 Non-toxic Probable antigen 12

DFSEFLNLI 0.085408 0.13867 Non-toxic Probable antigen 12

FMNTELAAF 0.072372 0.1799 Non-toxic Probable antigen 12

https://doi.org/10.1371/journal.pone.0305413.t001
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Table 2. The predicted HTL epitopes of the selected proteins with their IFN-γ, IL-4, and IL-10 production capability, toxicity, antigenicity, and allergenicity.

Protein Peptide IFN-γ IL-4 IL 10 Antigenicity Toxicity Allergenicity Alleles

S100-A4 EAAFQKLMSNLDSNR 0.48896694 -0.01 0.532 Probable antigen Non-toxic Non-allergen 13

Positive Non-inducer Inducer

GDKFKLNKSELKELL -0.22472288 1.32 0.632 Probable antigen Non toxic Non allergen 13

Negative Inducer Inducer

S100-A6 FQEYVTFLGALALIY 0.31086029 -1.07 0.59 Probable antigen Non-toxic Non-allergen 13

Positive Non-inducer Inducer

VNFQEYVTFLGALAL 0.1966474 -0.03 0.575 Probable antigen Non-toxic Non-allergen 13

Positive Non Inducer

VTFLGALALIYNEAL 0.39182418 -0.84 0.513 Probable antigen Non-toxic Non-allergen 13

Positive Non Inducer

S100-A8 YHKYSLIKGNFHAVY 0.58980742 0.2 0.618 Probable antigen Non-toxic Non-allergen 13

Positive Inducer Inducer

DVYHKYSLIKGNFHA 0.60852934 1.23 0.617 Probable antigen Non-toxic Non-allergen 13

Positive Inducer Inducer

LILVIKMGVAAHKKS 0.51190349 -0.85 0.648 Probable antigen Non toxic Non allergen 13

Positive Non inducer Inducer

S100-A9 EEFIMLMARLTWASH -0.39796618 0.28 0.413 Probable antigen Non-toxic Non-allergen 13

Negative Inducer Inducer

LSFEEFIMLMARLTW -0.69921594 -0.70 0.473 Probable antigen Non toxic Non allergen 13

Negative Non inducer Inducer

QGEFKELVRKDLQNF -0.12253003 0.20 0.563 Probable antigen Non toxic Non allergen 13

Negative Inducer Inducer

S100-A11 KTEFLSFMNTELAAF -0.067545146 1.27 0.532 Probable antigen Non-toxic Non-allergen 13

Negative Inducer Inducer

LDFSEFLNLIGGLAM -0.26248881 -0.76 0.557 Probable antigen Non-toxic Non-allergen 13

Negative Non-inducer Inducer

SKTEFLSFMNTELAA -0.20771576 1.34 0.53 Probable antigen Non toxic Non allergen 13

Negative Inducer Inducer

DGYNYTLSKTEFLSF -0.50491803 1.42 0.56 Probable antigen Non-toxic Non-allergen 13

Negative Inducer Inducer

https://doi.org/10.1371/journal.pone.0305413.t002

Table 3. The predicted B-cell (linear) epitopes.

Protein Start End Sequence Length Allergenicity Antigenicity

S100-A4 21 32 GKEGDKFKLNKS 12 Non-allergen Probable antigen

63 71 DSNRDNEVD 9 Non-allergen Probable antigen

91 98 EGFPDKQP 8 Non-allergen Probable antigen

S100-A6 21 55 GREGDKHTLSKKELKELIQKELTIGSKLQDAEIAR 35 Non-allergen Probable antigen

58 71 EDLDRNKDQEVNFQ 14 Non-allergen Probable antigen

S100-A8 21 37 LIKGNFHAVYRDDLKKL 17 Non-allergen Probable antigen

42 67 CPQYIRKKGADVWFKELDINTDGAVN 26 Non-allergen Probable antigen

S100-A9 24 36 VKLGHPDTLNQGE 13 Non-allergen Probable antigen

46 57 QNFLKKENKNEK 12 Non-allergen Probable antigen

94 111 MHEGDEGPGHHHKPGLGE 18 Non-allergen Probable antigen

S100-A11 27 39 KDGYNYTLSKTEF 13 Non-allergen Probable antigen

50 58 FTKNQKDPG 9 Non-allergen Probable antigen

68 76 DTNSDGQLD 9 Non-allergen Probable antigen

https://doi.org/10.1371/journal.pone.0305413.t003
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3.5 Mapping the vaccine construct

From the selected proteins: S100-A4, S100-A6, S100-A8, S100-A9, and S100-A11, 73 CTL epi-

topes, 15 HTL epitopes, and 13 B-cell epitopes were chosen for the vaccine construct, which

was built by connecting these epitopes with a suitable linker and a precise adjuvant. HBHA

was tagged as an adjuvant to the N terminal, while the selected epitopes were linked to each

other by using five linkers, including EAAAK, AYY, AK, KFER, and GPGPG (Fig 2).

3.6 Evaluation of physicochemical properties, solubility, allergenicity, and

antigenicity

The ExPASy ProtPram server illustrated that the vaccine has 1479 amino acids with an MW of

165023.50 Da. The vaccine had an isoelectric point (pI) of 9.45, indicating that it is basic

(pH> 7) in nature. The vaccine also had 175 total number of negatively charged and

241 total number of positively charged residues. With the chemical formula of

C7496H11807N1983O2131S38, and a total number of atoms of 23455, the vaccine also had an

extinction coefficient of 147770. However, the estimated high life of the vaccine was found to

be different based on the expression system, while it was found to be 30 hours in mammalian

reticulocytes, >20 hours in yeast cells, and>10 hours in E. coli. The server further confirmed

the vaccine protein’s stability, which reported an instability index of 23.94 (instability index

<40). The aliphatic index of the vaccine was found to be 79.02. Also, the vaccine is expected to

be water-soluble (hydrophilic), with a GRAVY score of -0.440. The vaccine is predicted to be

firmly soluble upon expression in E. coli (score of 0.999341). With estimated scores of 0.5283

and 0.4935, the Vaxijen 2.0 and ANTIGENpro servers suggested the vaccine had antigenic

properties. The vaccine may not be responsible for any allergic reactions since no allergenicity

Fig 2. The vaccine construct contains CTL (green color), HTL (orange color), and B-cell epitopes (blue color) with the linkers

(adjacent line) and an adjuvant (olive color).

https://doi.org/10.1371/journal.pone.0305413.g002
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was predicted in the vaccine through the AllerTOP v. 2.0 server (Table 4). However, the SOL-

pro and Protein-Sol servers predicted the vaccine as a soluble component with solubility scores

of 0.999341 and 0.531, respectively.

3.7 Secondary structure prediction

The GOR4, SOPMA, and PSIPRED servers were employed to predict the secondary structure

of the vaccine. The GOR4 server demonstrated that the vaccine’s structure comprised 70.18%

alpha helix, 25.83% random coil, and 3.99% extended strands (beta sheet). Conversely, the

SOPMA server’s prediction for the vaccine’s secondary structure revealed a random coil of

22.38%, an alpha helix of 66.13%, and an extended strand of 6.63%. The SOPMA server pre-

dicted a beta-turn structure of 4.87% in the vaccine; however, the GOR4 server did not detect

any similar structure (Table 5). Finally, the PSIPRED server provided a three-state prediction

for the protein secondary structure, including coil, helix, and strands (Fig 3, S1 Fig).

3.8 Tertiary structure prediction and validation

The I-TASSER server predicted five different models for the vaccine structure. Among these,

the model was chosen to have the highest C-score of -0.05, TM-score of 0.71 ± 0.12, and

RMSD score of 7.1 ± 4.2 Å (Fig 4). Subsequently, the refined 3D model was extracted from the

GalaxyWEB server, which featured the RMSD, MolProbity score, and Ramachandran’s favor-

ite region values of 0.404, 2.119, and 93.7%, respectively. The Ramachandran plot of the

SAVES model demonstrated that the majority of amino acid residues (90.6%) were found in

the most favored region, with a smaller percentage (7.5%) in the additional allowed region and

a tiny percentage (0.8%) in the generously allowed region (Fig 5). In the unminimized model,

the corresponding numbers were 81%, 15.1%, and 2.7%, respectively (Fig 5, Table 6). Accord-

ing to the ProSA server, the energy-minimized model exhibited a Z-score of -8.94 (Fig 5),

while the unminimized model scored -8.09 (Fig 5). Additionally, the SWISS-MODEL predicts

Table 4. Physicochemical properties, solubility, allergenicity, and antigenicity of the vaccine construct.

Parameter Value

Number of amino acids 1479

Molecular weight 165023.50

Theoretical isoelectric point (pI) 9.45

Total number of negatively charged residues (Asp + Glu) 175

Total number of positively charged residues (Arg + Lys) 241

Formula C7496H11807N1983O2131S38

Total number of atoms 23455

Extinction coefficient (at 280 nm in H2O) 147770

Estimated half-life (mammalian reticulocytes, in vitro) 30 hours

Estimated half-life (yeast cells, in vivo) >20 hours

Estimated half-life (E. coli, in vivo) >10 hours

Instability index 23.94 (Stable)

Aliphatic index 79.02

Grand average of hydropathicity (GRAVY) -0.440

Antigenicity (VaxiJen 2.0) 0.5283 (Antigen)

Antigenicity (ANTIGENpro) 0.4935 (Antigen)

Allergenicity (AllerTOP v. 2.0) Non-allergen

Solubility (SOLpro) 0.999341 (Soluble)

Solubility (Protein-Sol) 0.531(Soluble)

https://doi.org/10.1371/journal.pone.0305413.t004
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that the vaccine had a MolProbity score of 2.93, a Ramachandran preferred area of 81.31%, a

QMEAN score of -7.88, and a QMEANDisCo Global score of 0.27± 0.05 before refinement,

while after refinement these values were found to be 1.94, 94.11%, -3.88 and 0.29 ± 0.05,

respectively (Table 6).

3.9 Molecular docking between the vaccine and TLR receptor

The ClusPro 2.0 server was used to perform molecular docking and confirm the possible inter-

actions of the construct with the TLR-2 and TLR-4 receptors. ClusPro 2.0 generated 60 docked

structures for each receptor. Among these generated models, the preferred ones were chosen

based on the highest binding affinity and the lowest intermolecular energy. When docking

with TLR-2 and TLR-4, the predicted lowest energy scores were -1031.7 (kJ/mol) and -1313.6

(kJ/mol), respectively. Subsequently, PyMOL and PDB-sum were used to analyze and visualize

the docked vaccine-TLRs complex structures, and based on the details provided by PDBsum,

the "Vaccine—TLR-2" complex had seven hydrogen bonds, 24 salt bridges, and 251 non-bond

interactions (Fig 6, S1 Table). Besides, the "Vaccine—TLR-4" complex contained 48 hydrogen

bonds, 17 salt bridges, and 446 non-bond interactions (Fig 7, S1 Table).

Table 5. The vaccine’s secondary structure properties are predicted using GOR4 and SOPMA servers.

Properties GOR4 SOPMA

Alpha helix (Hh) 70.18% (1038) 66.13% (978)

310 helix (Gg) 0.00% (0) 0.00% (0)

Pi helix (Ii) 0.00% (0) 0.00% (0)

Beta bridge (Bb) 0.00% (0) 0.00% (0)

Extended strand (Ee) 3.99% (59) 6.63% (98)

Beta turn (Tt) 0.00% (0) 4.87% (72)

Bend region (Ss) 0.00% (0) 0.00% (0)

Random coil (Cc) 25.83% (382) 22.38% (331)

Ambiguous states 0.00% (0) 0.00% (0)

Other states 0.00% (0) 0.00% (0)

https://doi.org/10.1371/journal.pone.0305413.t005

Fig 3. The secondary structure of the vaccine was predicted by the PSIPRED server.

https://doi.org/10.1371/journal.pone.0305413.g003
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Fig 4. The predicted tertiary structure of the vaccine construct by I-TASSER. The ribbon (A) and surface (B) model view

of the vaccine’s tertiary structure was visualized by PyMol software.

https://doi.org/10.1371/journal.pone.0305413.g004

Fig 5. The Ramachandran plot and the Z-score of the predicted tertiary structure before (A and C) and after structural

refinement (B and D).

https://doi.org/10.1371/journal.pone.0305413.g005
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3.10 Free energy calculation by MM-GBSA

We calculated the free binding energy (MM-GBSA) for the vaccine-receptors complexes

through the HawkDock server. For the “Vaccine—TLR-2” complex, the VDW, ELE, GB, and

SA were calculated to be -216.29 (kcal/mol), -1451.89 (kcal/mol), 1556.13 (kcal/mol), and

-29.02 (kcal/mol), respectively. Subsequently, a total binding free energy of -141.07 (kcal/mol)

was calculated for the complex. Regarding the “Vaccine—TLR-4” complex, the VDW, ELE,

GB, and SA were estimated to be -356.85 (kcal/mol), -8958.65 (kcal/mol), 9092.05 (kcal/mol),

and -48.28 (kcal/mol), respectively. However, an elevated binding free energy was calculated

for the complex, estimating -271.72 (kcal/mol) (S2 Fig).

3.11 Prediction of B-cell (discontinuous) epitopes

With a total of 746 amino acid residues, the Ellipro server identified nine discontinuous B-cell

epitopes in the vaccine (S1 Table). However, each of these epitopes has a number of residues

and a score range ranging from 0.535 to 0.792. (Fig 8, S2 Table).

Table 6. The quality assessment and structural validation of predicted tertiary structure.

Model SAVES ProSA SWISS-MODEL Structure Assessment

PROCHECK (Ramachandran favored

region)

ERRAT Z

score

MolProbity

Score

Ramachandran favored

region

QMEAN QMEANDisCo

Global

I-Tasser (after

refinement)

90.6% 90.77 -8.94 1.94 94.11% -3.88 0.29 ± 0.05

I-Tasser (before

refinement)

81% 91.33 -8.09 2.93 81.31% -7.88 0.27± 0.05

https://doi.org/10.1371/journal.pone.0305413.t006

Fig 6. The docked complex of “Vaccine—TLR-2” and their interacting amino acid residues predicted by the

Cluspro 2.0 server.

https://doi.org/10.1371/journal.pone.0305413.g006
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3.12 Codon adaptation and in silico cloning

In silico cloning was performed primarily to introduce the vaccine into the E. coli expression

system. Following that, we adapted the codons of the vaccine in the E. coli K12 expression sys-

tem through the JCAT server. In this analysis, we found that the GC content of the improved

sequence was 47.4% while the CAI value was 1.0, which was satisfactory. The CAI is an

approach for assessing the biases in synonymous codons for a certain target sequence. How-

ever, the CAI index’s value may vary from 0 to 1, suggesting the possibility of a successful

expression. The higher the score, the more likely the target gene will be expressed. Meanwhile,

the GC content is between 30 and 70%, corresponding to the optimal range. Finally, the opti-

mized codon sequence was inserted in the pET28a (+) vector between PshAI and Acc65I

restriction sites by Vector NTI Advance software (Fig 9).

3.13 Immune simulation

Within 60 days of receiving the immunization, a high expression of B-cells became apparent,

along with an increased memory B-cell count (Fig 10A). Every B-cell was functioning, and the

immune response persisted for almost a year (Fig 10B). The natural killer (NK) and dendritic

cell (DC) cells also showed substantially long-lasting immunity (Fig 10C and 10D). After vac-

cination, the total macrophage (Mφ) population remained constant for a year (Fig 10E). Fur-

thermore, the vaccination resulted in a substantial rise in the production of IFN-γ while

concurrently suppressing the expression of tumor growth factor-β (TGF-β), conferring a

robust immune response that persisted for two months (Fig 10F). Following vaccination, the

observed T-cell responses include Th cells, CTL cells, and regulatory T-cells (Treg). The

Fig 7. The docked complex of “Vaccine—TLR-4” and their interacting amino acid residues predicted by the

Cluspro 2.0 server.

https://doi.org/10.1371/journal.pone.0305413.g007
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research further demonstrated a high expression level of both active Th cells and memory Th

cells on day 60 following immunization, but that level declined with time (Fig 11A and 11B).

Additionally, functional CTLs were identified as a high-level expression that remains relatively

long (Fig 11C and 11D), whereas Treg cells reduced significantly after the immunization (Fig

11E). The total amount of antigens was observed for 50 days of vaccination, which was further

replaced by IgM+IgG (Fig 11F).

3.14 Structural validation of the mRNA vaccine

The secondary structure of the vaccine mRNA sequence was illustrated by the RNAfold server

with an MFE score of -1760.00 kcal/mol (optimal secondary structure) and -1211.70 kcal/mol

(centroid secondary structure). The free energy of the thermodynamic and the frequency of

the MFE structure in the ensemble were predicted at -1818.19 kcal/mol and 0.00%, respec-

tively. The prediction of the secondary structure of the mRNA vaccine is depicted in Fig 12

and S3 Fig. This result is consistent with previous research suggesting that the mRNA structure

of the current vaccine may remain stable following its entry, transcription, and expression in

the host [85, 87–90].

Fig 8. The predicted discontinuous B-cell epitopes of the vaccine (A–I). Yellow surfaces indicate the predicted

discontinuous B-cell epitopes, while cyan sticks reveal the vaccine.

https://doi.org/10.1371/journal.pone.0305413.g008
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4. Discussion

In a notable scientific advancement, researchers successfully developed the first-ever cancer

vaccine in the year 1980. This groundbreaking vaccine was created using tumor cells and

tumor lysate, especially autologous tumor cells, in the development of colorectal cancer treat-

ment [91, 92]. In the early 1990s, the discovery of the first human tumor antigen, melanoma-

associated antigen 1 (MAGE-1), paved the way for further exploration and utilization of tumor

antigens in developing potential cancer treatments [93]. Cancer vaccines primarily use tumor-

associated antigens (TAAs) and tumor-specific antigens (TSAs) to stimulate the individual’s

immune system. In principle, the vaccine’s administration can elicit targeted cellular immu-

nity and humoral immune response, impeding the progression of tumors and eventually eradi-

cating malignant cells [94]. In the meantime, most cancer vaccines are undergoing preclinical

Fig 9. In silico cloning of the vaccine’s optimized codon sequences into pET28a (+) vector. Restriction sites indicated in yellow boxes show the two

restriction sites (Acc65I and PshAI).

https://doi.org/10.1371/journal.pone.0305413.g009
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and clinical trials [95]. Therefore, there is an urgency to develop more precise antigens and

platforms for cancer vaccine development.

Over the last decade, significant advances in technology and research investment have

shown that the fast-expanding area of mRNA therapeutic agents has become a viable platform

for addressing many challenges encountered in vaccine development for infectious diseases

and cancer [96, 97]. Since mRNA is a non-infectious and non-integrating platform, there are

no possible hazards of infection or insertional mutagenesis, thus making it an advantageous

vaccine candidate over subunit, killed, live-attenuated, and DNA-based vaccines [98–101].

Furthermore, the in vivo stability of mRNA may be modulated by several changes and delivery

approaches since it undergoes degradation via intrinsic cellular mechanisms [98–101]. Addi-

tionally, there is also a prospect of modifying and downmodulating the immunogenicity of

Fig 10. Exploring the vaccine’s immune simulation using the C-ImmSim server. The evolution of entire (A) and per

state (B) B-cell populations, NK (C) and DC (D) cell populations, the population of Mφ per state (E), and the cytokines

and the IL-2 level are illustrated by the primary plot and the sub-plot, respectively (D) (Here, D refers to Simson’s

index, which measures the degree of variety. Since an increase in D suggests an increase in the number of epitope-

specific T-cells, a lower D value indicates a lower level of diversity).

https://doi.org/10.1371/journal.pone.0305413.g010
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mRNA vaccines to improve their safety aspect [102]. mRNA vaccines may also have additional

benefits, such as low production costs, rapid development, and vaccine effectiveness. Since

they can be expressed in the cytoplasm without reaching into the nucleus, they perform better

than DNA vaccines [103].

The manipulation of mRNA sequences has the potential to enable the manufacture of a

wide range of targeted proteins with novel therapeutic applications. Computational

approaches have emerged as more efficient for recognizing vaccine compositions than conven-

tional vaccine development techniques. These approaches leverage the power of advanced

algorithms and data analysis techniques to expedite the process of identifying optimal vaccine

compositions. By analyzing vast amounts of data, these methods can quickly identify potential

vaccine candidates and predict their efficacy [104]. Utilizing existing manufacturing processes

offers advantages like enhanced diversity, flexibility, time efficiency, and cost-effectiveness in

protein production [101, 105–107]. Despite being aware of some intrinsic constraints such as

Fig 11. T-cells mediated immune responses predicted by the C-ImmSim server. The evolution of Th with their

memory cell life span (A), Th cell population per state cell (B), the development of entire Tc populations (C) and Tc

population per state cell (D), the Treg populations per state (E), and the antigen and antibody titers after post

vaccination state (F).

https://doi.org/10.1371/journal.pone.0305413.g011
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immunogenicity, instability, and delivery inefficiency, mRNA vaccines have shown promising

signs owing to recent advancements in synthesis technology and structural alterations of

mRNA sequences [108–110]. Recently, the FDA granted authorization over the first two

SARS-CoV-2 mRNA vaccines, particularly Pfizer/BioNTech’s BNT162b2 and Moderna’s

mRNA-127 (Spikevax) [111, 112]. Also, Pfizer/BioNTech’s BNT162b2 is the first mRNA vac-

cine to get commercial approval from the FDA [111, 112]. In 2023, Professors Katalin Kariko

and Drew Weissman received a "Nobel prize" in physiology or medicine for the innovations of

such SARS-CoV-2 mRNA vaccines [113]. The advent of these innovative vaccines has ushered

in an age of innovation in the field of vaccination against infectious diseases and cancer.

The mRNA vaccine platform shows promise as a potential strategy for cancer vaccines

since it involves the introduction of exogenous synthesized mRNA into cells to serve as tem-

plates for antigen production [97, 114]. Non-replicating mRNA and self-amplifying RNA vac-

cines are the two primary categories of mRNA vaccines. However, most mRNA-based cancer

vaccines have been formulated by non-replicating mRNA [97, 103]. Moreover, mRNA vac-

cines enable the concurrent encoding of multiple antigens, including full-length tumor anti-

gens. The elicitation of increased humoral and cellular immune responses by the encoded

antigens enhances the potential to overcome resistance to cancer vaccines [115]. Also, the

mRNA vaccine has shown promising results in stimulating MHC I-mediated CD8+ T-cell

responses, which makes it a potential candidate for cancer treatment [116, 117]. Recently,

Fig 12. Predicted mRNA structure of the vaccine by RNAfold web server. The base pair probabilities of the mRNA vaccine

with the minimum free energy (A) and centroid (B) structure and the positional entropy of the mRNA vaccine with the minimum

free energy (C) and centroid (D) structure.

https://doi.org/10.1371/journal.pone.0305413.g012
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Pfizer and BioNTech developed an mRNA neoantigen vaccine against PDAC. The vaccine is

based on uridine mRNA-lipoplex nanoparticles, demonstrating a substantial efficacy level in

the phase I clinical trial [118]. However, this study is the first endeavor to develop an in silico-

based mRNA vaccine for pancreatic cancer. Therefore, this study involves the identification of

various overexpressed protein members of the S100 protein family, including S100-A4,

S100-A6, S100-A8, S100-A9, and S100-A11, to develop a successful multiepitope-based vac-

cine against pancreatic cancer. CTL epitopes are vital in stimulating the host immune

responses to combat intracellular pathogens. The activation of Tc cell response originates

through the binding of Tc cells to MHC-I molecules. Hence, vaccines formulated using CTL

epitopes can induce robust CD8+ T cell activation, thus contributing a significant role in eradi-

cating intracellular pathogens [119]. Furthermore, HTL epitopes are crucial in presenting

immunogenic processed peptides to the T-cell receptor (TCR) on CD4+ T-cells. Therefore, it

is pivotal in initiating both cellular and antibody-mediated immune responses. The association

between MHC-II molecules and the TCR plays a key role in defense against microbial infec-

tions, rejecting transplants, and tracking the progression of malignancies [58, 120–123]. Con-

sequently, the development of mRNA vaccines always requires recognition by CD4+ and CD8

+ T-cells [80, 124, 125]. This study evaluated the epitopes from S100-A4, S100-A6, S100-A8,

S100-A9, and S100-A11 for their ability to bind to MHC-I and MHC-II on immune cells.

Regarding CTL epitopes, the presentation of peptides tends to be restricted to specific alleles,

including HLA-A1, HLA-A2, HLA-A3, HLA-A24, HLA-A26, HLA-B7, HLA-B8, HLA-B27,

HLA-B39, HLA-B44, HLA-B58 and HLA-B62. The HTL-predicted peptides were restricted to

specific alleles, including MHC-II alleles such as HLA-DRB1-0101, HLA-DRB1-0301,

HLA-DRB1-0401, HLA-DRB1-0701, HLA-DRB1-0801, HLA-DRB1-0901, HLA-DRB1-1001,

HLA-DRB1-1101, HLA-DRB1-1201, HLA-DRB1-1301, HLA-DRB1-1401, HLA-DRB1-1501,

and HLA-DRB1-1601. The peptides demonstrated an elevated level of antigenicity while show-

ing minimal levels of allergenicity and toxicity.

B-cell epitopes have been extensively recognized as a fundamental aspect in the develop-

ment of vaccines since they play a substantial role in the association between antigens and anti-

bodies [80, 126–128]. The B-cell epitopes we anticipated exhibited an elevated antigenicity

level and lacked any allergenicity indications. Subsequently, various linkers and adjuvants

were used to fabricate the vaccine. Additionally, the designed mRNA vaccine was estimated to

have an MW of 165023.50 Da and was found to be highly soluble. Assessing the solubility of a

recombinant protein in overexpressed E. coli is of utmost importance for a diverse range of

biochemical and functional experiments [80, 129]. The vaccine’s theoretical pI is 9.45, suggest-

ing acidic characteristics. It also has instability and aliphatic indexes of 23.94 and 79.02, respec-

tively. These values indicate that the vaccine exhibited hydrophobic characteristics consistent

with the reported presence of aliphatic side chains. Vaccine development relies heavily on

understanding protein folding into secondary and tertiary structures [80, 130]. Structural anti-

gens, such as those in regions of unfolded protein and α-helical coils, have been crucial for elic-

iting protein-specific immune responses. Antibodies formed in response to opportunistic

infections can bind to these two structural antigens if they refold into their native shape. Refin-

ing the vaccine led to a notable improvement in its tertiary structure, unveiling key features on

the Ramachandran plot. The Ramachandran plot analysis revealed that a substantial majority

(90.6%) of the vaccine residues are in preferred areas. Besides, a significant portion of the resi-

dues (7.05%) are located in the allowed regions, with a smaller fraction (0.8%) found in the

generously allowed region. Based on the findings, the vaccine model’s overall quality is satis-

factory. A docking study using human TLR-2 and TLR-4 evaluated the interaction between

the vaccine and TLRs on immune cells. Subsequently, the docking analysis suggested that the

vaccine had a significant level of affinity for TLR-2 and TLR-4 receptors. The MM-GBSA
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analysis of the "Vaccine—TLR-2" and "Vaccine—TLR-4" complexes also suggest a strong bind-

ing affinity with a free binding energy score of -141.07 (kcal/mol) and -271.72 (kcal/mol),

respectively.

Codon optimization was performed to improve the expression of our recombinant vaccine

in E. coli, especially the K12 strain, which provides a high degree of expression of the vaccine

in bacteria with a GC content of 47.04% and CAI score of 1.0 (acceptable range for GC content

is 30–70%, and for CAI is 1.0). The appearance of memory B-cells and T-cells was also

observed, along with the persistent immunity of B-cells over one year. The activation of Th

and subsequent production of IFN-γ and IL-2 exhibited distinctive features, evidenced by the

immediate rise in IFN-γ and IL-2 concentrations after the first administration and their persis-

tent elevation at maximum levels with repeated exposure to the antigen. This finding suggests

an increase in the levels of Th cells and the production of IgM and IgG, which indicates a

humoral immune response. Also, the minimum free energy of the mRNA vaccine was pre-

dicted to be -1760.00 kcal/mol, indicating the stability of the vaccine following its entry, tran-

scription, and expression in the host [85, 87–90, 131].

5. Conclusion

In silico-based mRNA pancreatic cancer vaccines represent a promising and innovative

approach to cancer immunotherapy. The vaccines are designed using computational methods

to identify and encode tumor-specific antigens into mRNA molecules, which can be delivered

to the patient’s immune cells to stimulate a robust anti-cancer immune response. The devel-

oped mRNA vaccine appeared to be soluble, hydrophilic, and acidic. The structural analysis

revealed that the vaccine was a stable and functioning protein. Following that, the docking

study indicated that the vaccine has a high affinity for TLR-2 and TLR-4 receptors, whereas

the MM-GBSA analysis validated the statement. The vaccine was also firmly expressed in a

computationally designed bacterial vector. Regarding immunological responses, the vaccine

showed both humoral and adaptive immunity. Finally, this mRNA vaccine would be stable

enough after its entrance, transcription, and expression in the host. The findings from these

studies provide valuable insights into the properties and potential applications of a successful

computationally designed PDAC vaccine. The development of this vaccine marks a significant

milestone in the field of PDAC research and therapeutic advancements.

Supporting information

S1 Fig. The secondary structure of the vaccine was predicted by the PSIPRED server, with the

features (A) and types (B) of amino acids of the vaccine. In the sequence, among 1479 amino

acids, where most of the amino acids were in the coil structure (grey), lesser in the helix struc-

ture (pink color), and least in the strand (yellow color) (A). The different types of amino acids

in the sequence have been exhibited: the small nonpolar amino acids were predominant

(orange), the hydrophobic amino acids (green) and the polar amino acids (red) were less

prominent, and the aromatic plus cysteine residues (sky blue) were least prominent (B).

(TIF)

S2 Fig. The MM-GBSA free binding energy analysis of the “Vaccine—TLR-2" and "Vaccine

—TLR-4" complexes.

(TIF)

S3 Fig. A mountain plot representation of the MFE structure, the thermodynamic ensem-

ble of RNA structures, and the centroid structure.

(TIF)
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S1 Table. The interactions between the vaccine and TLRs.

(DOCX)

S2 Table. The discontinuous B-cell epitopes of the vaccine by Ellipro server.

(DOCX)
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