211 research outputs found

    Genetic analysis of grain protein deviation in wheat

    Get PDF

    Invited Review: IPCC, Agriculture and Food - A Case of Shifting Cultivation and History.

    Get PDF
    Since 1990 the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed data base of the ca. 2,100 cited experiments and simulations in the five ARs were analysed with respect to impacts on yields via crop type, region and whether or not adaptation was included. Quantitative data on impacts and adaptation in livestock farming have been extremely scarce in the ARs. The main conclusions from impact and adaptation are that crop yields will decline but that responses have large statistical variation. Mitigation assessments in the ARs have used both bottom-up and top-down methods but need better to link emissions and their mitigation with food production and security. Relevant policy options have become broader in later ARs and included more of the social and non-production aspects of food security. Our overall conclusion is that agriculture and food security, which are two of the most central, critical and imminent issues in climate change, have been dealt with in an unfocussed and inconsistent manner between the IPCC five ARs. This is partly a result of agriculture spanning two IPCC working groups but also the very strong focus on projections from computer crop simulation modelling. For the future, we suggest a need to examine interactions between themes such as crop resource use efficiencies and to include all production and non-production aspects of food security in future roles for integrated assessment models

    Genetic analysis of grain protein deviation in wheat

    Get PDF
    Relatório de estágio do mestrado em Ensino da Educação Física nos Ensinos Básico e Secundário, apresentado à Faculdade de Ciências do Desporto e Educação Física da Universidade de CoimbraO Estágio Pedagógico operacionalizado na Escola Secundária de Anadia representou a possibilidade de aplicar em contexto real os conhecimentos e saberes científicos adquiridos ao longo do curso, aliados à experiência profissional já adquirida. Ao longo deste percurso assumiu particular importância a reflexão constante sobre a prática, aliada à investigação e mobilização de saberes pertinentes. É esta dinâmica que permite ao professor ser produtor da sua profissão, ser um profissional reflexivo e crítico, pois o ato de ensinar representa uma atividade transformadora da sociedade. Os professores devem questionar diariamente o que ensinam, a forma como o fazem e os objetivos que perseguem. A cultura de profissionalidade docente assenta no conhecimento pedagógico de e para a mestria. Uma das principais conclusões deste processo de formação evidencia a necessidade de ensinar e promover a aprendizagem para todos os alunos. Até os menos aptos no domínio motor podem aceder a níveis elevados de aprendizagem, desde que beneficiem de oportunidades e condições educativas apropriadas. Esta é uma preocupação que deve assistir a todos os professores, pois trata-se acima de tudo, de uma questão de responsabilidade educativa social. Apenas com professores que acreditem na importância da qualidade do ensino se pode credibilizar a Educação Física. Assiste-se a um momento de particular incerteza, sobretudo nas orientações emanadas da administração central, evidenciadas, por exemplo, na exclusão da nota de Educação Física no apuramento da média final do Ensino Secundário. Esta medida constituiu uma clara desvalorização da disciplina, com reflexos negativos na participação e empenho motor dos alunos. Cabe-nos a nós, futuros profissionais, guiados por valores éticos e morais, devolver o reconhecimento da importância inequívoca da disciplina de Educação Física, com estatuto formal igual às demais. The Teaching Practice that took place in the Secondary School of Anadia provided the possibility to apply in real context the scientific knowledge and skills acquired while taking the degree, combined with professional experience already acquired. Throughout this path, it became particularly important the constant reflection on the practice, along with the research and the use of relevant knowledge. This dynamics allows the teacher to be a producer of his career, to be a reflective and critical professional, as teaching is an activity that enables society to change. Teachers should question what they teach, how they teach and their teaching goals. The professional teaching culture is based on knowledge and teaching to mastery. One of the main conclusions of this practice process highlights the need to teach and to promote learning for all students. Even the least able at the motor domain, can have access to higher levels of learning, if they are given the educational opportunities and the appropriate conditions. This is a concern all teachers should have in mind, since that is a question of educational and social responsibility. Only the teachers who believe in the importance of the quality of education can make Physical Education more credible. We are witnessing a moment of particular uncertainty, especially in the guidelines issued by the government, seen mainly when the Physical Education marks are not taken into account to calculate the final average of Secondary School Education. This measure was a clear devaluation of this school subject, with negative effects on students’ participation and effort. It is up to us, as future professionals guided by ethical and moral values, to gain back the recognition of the clear relevance of Physical Education – a subject as important as all the others

    Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time

    Get PDF
    Projections based on invariant genotypes and agronomic practices indicate that climate change will largely decrease crop yields. The comparatively few studies considering farmers’ adaptation result in a diversity of impacts depending on their assumptions. We combined experiments and process-based modeling for analyzing the consequences of climate change on European maize yields if farmers made the best use of the current genetic variability of cycle duration, based on practices they currently use. We first showed that the genetic variability of maize flowering time is sufficient for identifying a cycle duration that maximizes yield in a range of European climatic conditions. This was observed in six field experiments with a panel of 121 accessions and extended to 59 European sites over 36 years with a crop model. The assumption that farmers use optimal cycle duration and sowing date was supported by comparison with historical data. Simulations were then carried out for 2050 with 3 million combinations of crop cycle durations, climate scenarios, management practices, and modeling hypotheses. Simulated grain production over Europe in 2050 was stable (−1 to +1%) compared with the 1975–2010 baseline period under the hypotheses of unchanged cycle duration, whereas it was increased (+4–7%) when crop cycle duration and sowing dates were optimized in each local environment. The combined effects of climate change and farmer adaptation reduced the yield gradient between south and north of Europe and increased European maize production if farmers continued to make the best use of the genetic variability of crop cycle duration

    An AgMIP Framework for Improved Agricultural Representation in Integrated Assessment Models

    Get PDF
    Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications

    The bZIP transcription factor SPA Heterodimerizing Protein represses glutenin synthesis in Triticum aestivum

    Get PDF
    The quality of wheat grain is mainly determined by the quantity and composition of its grain storage proteins (GSPs). Grain storage proteins consist of low- and high-molecular-weight glutenins (LMW-GS and HMW-GS, respectively) and gliadins. The synthesis of these proteins is essentially regulated at the transcriptional level and by the availability of nitrogen and sulfur. The regulation network has been extensively studied in barley where BLZ1 and BLZ2, members of the basic leucine zipper (bZIP) family, activate the synthesis of hordeins. To date, in wheat, only the ortholog of BLZ2, Storage Protein Activator (SPA), has been identified as playing a major role in the regulation of GSP synthesis. Here, the ortholog of BLZ1, named SPA Heterodimerizing Protein (SHP), was identified and its involvement in the transcriptional regulation of the genes coding for GSPs was analyzed. In gel mobility shift assays, SHP binds cis-motifs known to bind to bZIP family transcription factors in HMW-GS and LMW-GS promoters. Moreover, we showed by transient expression assays in wheat endosperm that SHP acts as a repressor of the activity of these gene promoters. This result was confirmed in transgenic lines overexpressing SHP, which were grown with low and high nitrogen supply. The phenotype of SHP-overexpressing lines showed a lower quantity of both LMW-GS and HMW-GS, while the quantity of gliadin was unchanged, whatever the nitrogen availability. Thus, the gliadin/glutenin ratio was increased, which suggests that gliadin and glutenin genes may be differently regulated

    Uncertainty in Simulating Wheat Yields Under Climate Change

    Get PDF
    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking

    Analysing urban heat island patterns and simulating potential future changes

    Get PDF
    Climate change is interpreted as one of the most serious environmental problems for the 21st century. Changes in climate are now generally accepted. However, the rate of change has spatial characteristics and is highly uncertain. The Himalaya is experiencing abrupt change; so vulnerability and adaptation studies have become crucial. This pilot study presents initial findings of the research project entitled ‘Human Ecological Implications of Climate Change in the Himalaya.’ A study of climate change perceptions, vulnerability, and adaptation strategies of farming communities of the cool-wet temperate (Lumle) and the hot-wet sub-tropical (Meghauli) villages in Central Nepal was conducted. The findings are derived from the analysis of temperature and precipitation data of last 40 years, and primary data collected in September 2012. Focus Group Discussions, Key Informant Interviews, and Historical Timeline Calender were applied. The changes perceived by the communities are fairly consistent with the meteorological observations and are challenging the sustainability of social-ecological systems and communities’ livelihoods. Farming communities have adopted some strategies to minimize the vulnerability. But the adopted strategies have produced both negative and positive results. Strategies like flood control, shifting crop calendars, occupational changes and labour migrations have produced positive results in livelihood security. Occupational changes and labour migration have negatively impacted local agro-ecology and agricultural economies. Early-harvesting strategies to reduce losses from hailstorm have reduced the food and fodder security. Lack of irrigation for rice-seedlings is severely affecting the efficacy of shifting the rice-transplantation calendar. Conclusions suggest that while farmers have practiced strategies to better management of farms, livelihood sustainabilities are reaching thresholds due to the changing conditions.Rishikesh Pandey, Douglas K Bardsle

    Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models

    Get PDF
    Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.Peer reviewe
    corecore