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Uncertainty in simulating wheat yields under
climate change
S. Asseng et al.†

Projections of climate change impacts on crop yields are
inherently uncertain1. Uncertainty is often quantified when
projecting future greenhouse gas emissions and their influence
on climate2. However, multi-model uncertainty analysis of crop
responses to climate change is rare because systematic and
objective comparisons among process-based crop simulation
models1,3 are difficult4. Here we present the largest stan-
dardized model intercomparison for climate change impacts
so far. We found that individual crop models are able to
simulate measured wheat grain yields accurately under a
range of environments, particularly if the input information
is sufficient. However, simulated climate change impacts vary
across models owing to differences in model structures and
parameter values. A greater proportion of the uncertainty
in climate change impact projections was due to variations
among crop models than to variations among downscaled
general circulation models. Uncertainties in simulated impacts
increased with CO2 concentrations and associated warming.
These impact uncertainties can be reduced by improving
temperature and CO2 relationships in models and better quan-
tified through use of multi-model ensembles. Less uncertainty
in describing how climate change may affect agricultural
productivity will aid adaptation strategy development and
policymaking.

Uncertainties in projections of climate change impacts on
future crop yields derive from different sources in modelling.
The trajectories of future greenhouse gas emissions cannot be
projected easily as they are strongly influenced by political and
socio-economic development. A range of plausible projections
(scenarios) of emissions are used instead2. Projecting the effects
of emissions on climate and the downscaling of climate data
themselves, are both inherently uncertain, because different general
circulation model ensembles5 and downscaling methods6 give
different results. Finally, uncertainty in simulating the response
of crops to altered climate can be attributed to differences in the
structures of crop models and how model parameters are set.
Process-based crop models account for many of the interactions
among climate, crop, soil and management effects and are the
most common tools for assessing climate change impacts on
crop productivity. Many crop model impact assessments have
been carried out for specific locations7, agricultural regions8 and
the globe9. Statistical methods have also been used to analyse
trends in yields driven by climate10, but interactions between
climate and non-climate factors confound results11. This hinders
the attribution of causality12 and development of appropriate
adaptation strategies.

Uncertainty, any departure from the unachievable ideal of
completely deterministic knowledge of a system13, has been

†A full list of authors and affiliations appears at the end of the paper.

addressed by the climate science community through probabilistic
projections based on multiple general circulation models (GCMs)
or regional climate model ensembles14. However, most climate
change agricultural impact assessments have used a single crop
model3, limiting the quantification of uncertainty15. As cropmodels
differ in the way they simulate dynamic processes, set parameters
and use input variables3, large differences in simulation results have
been reported16. Although uncertainty of crop model projections
is sometimes assessed by using more than one crop model16 or by
perturbing crop model parameters17, coordinating comprehensive
assessments has proved difficult4.

To estimate the uncertainty associated with studies of climate
impacts on crop yields, we used 27 different wheat crop models
(Supplementary Tables S1 and S2) at four sites representing very
different production environments (Fig. 1a). Simulated grain yields
varied widely, although median values were close to observed
grain yields across single-year experiments for four representative
environments (Supplementary Table S3) in the Netherlands,
Argentina, India and Australia (Fig.1a, b). This phenomenon was
previously reported in anothermulti-model comparison with fewer
models16, and is comparable to the improved seasonal climate
simulations produced with multiple GCMs (ref. 18). The range
of simulated yields was reduced significantly after full calibration,
such that >50% of yields from calibrated models were within
the mean coefficient of variation (CV%) (±13.5%) of >300
wheat field experiments19 (Fig. 1c). Similar patterns were found
for other simulated aspects of wheat growth (Fig. 1d). Hence,
crop models are able to simulate measured grain yield and other
crop components accurately under diverse environments if input
information is sufficient.

To illustrate the possible changes in uncertainty of simulated
impacts, we analysed the sensitivity of models to a combination
of changes in precipitation and increases in both temperature
and atmospheric CO2 concentration (734 ppm, compared with
baseline at 360 ppm) based on a location-specific scenario that
best approximated the ensemble of high-emission late-century
climate projections (Supplementary Table S3). Simulated climate
change yield responses of all partially calibrated crop models had
CV values between 20 and 30% (Fig. 2a); these were reduced
by 2–7% when models were fully calibrated. However, the CV
of simulated impacts using the 50% best-performing calibrated
models (based on root mean square errors (r.m.s.e) across all
locations) was about 2% higher than using all models, and this
decreased only when the 50% of models closest to observed yields
at each location were used (Fig. 2a). Uncertainty in simulated
climate change impacts differed across the environments (Fig. 2a).
In addition, uncertainty in simulated impacts varied with soil
(Fig. 2b) and crop management (Fig. 2c,d). Hence, the overall
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Figure 1 |Wheat model–observation comparisons. a, Global map of wheat production30 showing experimental sites (stars) representative of CIMMYT
mega-environments (ME, broadly indicated by ovals, http://wheatatlas.cimmyt.org). b, Observed (cross mark) and simulated (box plots) grain yields from
single-year experiments for the Netherlands (NL), Argentina (AR), India (IN) and Australia (AU). Simulated yields are from 27 different wheat crop
models. Partially calibrated simulated yields (larger boxes)—researchers had no access to observed grain yields and growth dynamics (blind test).
Calibrated simulated yields (smaller boxes)—researchers had access to observed grain yields and growth dynamics. In each box plot, vertical lines
represent, from left to right, the 10th percentile, 25th percentile, median, 75th percentile and 90th percentile of simulations. Standard deviation for
observed yields (based on measurements of four replicates) is shown as an error bar if known. c, Number of models within mean field experimental
variation (13.5%; ref. 19) for partially calibrated (open bars) and fully calibrated models (grey bars) for single locations (NL, AR, IN and AU for each
country) and combinations of locations. d, Relative r.m.s.e. of simulation–observation comparisons for partially calibrated (open bar) and fully calibrated
models (grey bars) of grain yield components across all four locations. LAI, leaf area index; ET, evapotranspiration.
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Figure 2 |Variability in impact model uncertainty. a, CV% for simulated
yield response to a location-specific scenario representing GCM
projections for the high-emission (A2) scenario for the late century (in
relation to baseline 1981–2010, Supplementary Table S3) with 27 crop
models. Models were partially calibrated (black) or fully calibrated (green).
In addition, 50% of models with the closest simulations to the observed
yields across all locations (blue) and 50% of models with the closest
simulations to the observed yields per location are shown (red). b–d, CV%
of simulated yield response to the climate change scenario with 27 fully
calibrated crop models with increased (solid red) and reduced (dashed red)
soil water holding capacity (b), early (solid red) and delayed (dashed red)
sowing dates (c) and increased (solid red) and reduced (dashed red) N
fertilizer applications (d; only 20 models included N dynamics); fully
calibrated 20 models that included N dynamics (dashed green). The
fully calibrated simulation (green) from a is reproduced in b–d for
comparison. The Netherlands (NL), Argentina (AR), India (IN) and
Australia (AU).

growing environment, in particular the soil and crop management,
affects the range of simulated grain yields across models, thus
adding to uncertainty in responses coming from individual models.
Therefore, selecting a subset of models that perform best in
present environments does not reduce uncertainty in simulated
climate change impacts.

Changes in atmospheric CO2, temperature and precipitation
are key drivers of the responses of crops to climate change20.
Simulated impacts of elevated CO2 on yields varied relatively little
across models (50% of model results were within ±20% of the
median response; Fig. 3a–d and Supplementary Fig. S5), but the
variation across 80% of the crop models increased under elevated
CO2 concentration mostly in the low-yielding environment of
Australia (see box-plot whiskers in Fig. 3d). The uncertainty in
simulated yields did not increase with increasing CO2 in the
other environments. This is not surprising as elevated CO2 affects
fewer processes than increased temperature and because several
of the wheat models have used observations from free-air CO2
enrichment experiments to improve model processes related to
high CO2 (refs 21,22). However, none of the models has been
tested with elevated CO2 in combination with high temperature.

Most simulated yield responses to a 180 ppm CO2 increase at
present temperatures (Fig. 3a–d) were within the range ofmeasured
responses, ranging from 8% to 26% with elevated atmospheric
CO2 concentrations (Fig. 3e) across experiments conducted in
the USA, Germany and China23,24 (Supplementary Information,
page 11 last paragraph).

In contrast to the mean response of yields to CO2, uncertainty
in simulated yield showed a strong dependency on temperature,
particularly when the temperature increase exceeded 3 ◦C with
associated changes in atmospheric CO2. The median model
response to a 3 ◦C increase in temperature (Fig. 3a–d and
Supplementary Fig. S5) is consistent with general field observations
(Fig. 3e); observed wheat grain yields declined by 3–10% ◦C−1

increase in mean temperature10,24 (Supplementary Information,
page 11 last paragraph). The increased range of impacts at
high temperatures (50% of models were between 20 and 40%
of the median response on either side) indicated an increased
model uncertainty with increasing temperature. This is partly
related to simulated phenology (Supplementary Fig. S3). For
example, phenology is often enhanced with increasing temperature
resulting in less time for light interception and photosynthesis
and consequently less biomass and yield. In addition, the
increased model uncertainty is also partly due to an increased
frequency of high-temperature events and its simulated impact
on crop growth25 (Supplementary Fig. S4), and high-temperature
interactions with elevated CO2 (Fig. 3). However, accounting
for a process such as high-temperature stress impact in a
model does not necessarily result in correctly simulating that
effect (Supplementary Fig. S4), as the modelled process itself,
for example, leaf area or biomass growth, interacts with other
model processes in determining the final yield response of a
model. Precipitation affected simulated yields, but precipitation
change had little impact on the range of simulated responses
(Supplementary Fig. S2).

If averagingmulti-model simulations is superior to a single crop4
or climate26 model simulation because the ratio of signal (mean
change) to noise (variation) increases with the number of models
and errors tend to cancel each other out, we should be able, with
caution27, to estimate how many models would be required for
robust projections. We assessed this by randomly choosing 260
subsets of the crop models, and computing the mean and spread
of simulated results (Supplementary Fig. S1). As the variation in
yields was about 13.5% around the mean in field experiments19,
we considered projections to be robust if the range of projections
was within 13.5% of the mean. The number of models required
for robust assessments of climate change varied depending on
the magnitude of temperature change and interactions with the
change in atmospheric CO2 (Fig. 4a). For example, at least five
models are needed for robust assessments of yield impacts for
increases of up to 3 ◦C and 540 ppm of CO2. Fewer models are
needed for smaller changes and more models for greater changes
in temperature (Fig. 4a).

When simulating impacts assuming amid-century A2 emissions
scenario (556 ppm of CO2) for climate projections from 16
downscaled GCMs using 26 wheat models, a greater proportion
of the uncertainty in yields was due to variations among
crop models than to variations among the downscaled GCMs
(Fig. 4b). In contrast, GCM uncertainty tends to dominate in
perturbed single crop model parameter studies28. The variation
of simulated yields for the scenario ensemble was greater for
low-yielding environments and absolute values were similar to
observations across yield levels and within the range of field
experimental variation19. Smaller projected climate changes, for
example, for low emissions or early-century time frames, result in
less variation in simulated impacts; larger climate changes result in
more variation (Fig. 3).
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Figure 3 | Sensitivity of simulated and observed wheat to temperature and CO2 change. a–d, Simulated relative mean (30-year average, 1981–2010) grain
yield change for increased temperatures (no change, grey; +3 ◦C, red; +6 ◦C, yellow) and elevated atmospheric CO2 concentrations for the Netherlands
(NL; a), Argentina (AR; b), India (IN; c) and Australia (AU; d). For each box plot, vertical lines represent, from left to right, the 10th percentile, 25th
percentile, median, 75th percentile and 90th percentile of simulations based on multi-models. e, Observed range of yield impacts with elevated CO2

(refs 23,24). Observed range of yield impacts with increased temperature10,24 (extrapolated, based on separate experiments with 40–345 ppm elevated
CO2 and 1.4–4.0 ◦C temperature increase, Supplementary Information).

We conclude that projections from individual crop models
fail to represent the significant uncertainties known to exist in
crop responses to climate change. On the other hand, model
ensembles have the potential to quantify the significant, and
hitherto uncharacterized, crop component of uncertainty. Crop
models need to be improved to more accurately reflect how
heat stress and high-temperature-by-CO2 interactions affect plant
growth and yield formation.

Methods
Twenty-seven wheat crop simulation models (Supplementary Tables S1 and S2)
were tested within the Agricultural Model Intercomparison and Improvement
Project29 (www.agmip.org), with data from quality-assessed field experiments
(sentinel site data) from four contrasting environments using standardized
protocols, including partial and full model calibration experiments, to assess the
role of crop model-based uncertainties in projections of climate change impacts
(Fig. 1a and Supplementary Information). Model simulations were executed by
individual modelling groups.
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Figure 4 | Size of model ensembles and impact model uncertainty.
a, Average number of crop models across locations required to
reduce the simulated yield impact variation to within the mean field
experimental CV% of 13.5% (ref. 19). Different colours indicate elevated
atmospheric CO2 concentrations (black, 360 ppm; red, 450 ppm; blue,
540 ppm; green, 630 ppm; dark yellow, 720 ppm) in combinations with
temperature changes. Error bars show s.d. b, CV due to crop model
uncertainty (using 10th percentile to 90th percentile of simulations based
on 26 crop models) in simulated 30-year average climate change yield
impact (black) and due to variation in 16 downscaled GCM (red,
Supplementary Tables S6 and S7) mid-century A2 emission scenarios
(2040–2069). Numbers indicate present yields at each location
(Supplementary Table S3).
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