392 research outputs found

    Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Get PDF
    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydro-dynamically controlled gas density transition injection methods

    Hot spots and dark current in advanced plasma wakefield accelerators

    Get PDF
    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed

    An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Get PDF
    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 106 per shot for a 100 period undulator, with a mean peak brilliance of 1 × 1018 photons/s/mrad2/mm2/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs

    Undulator radiation driven by laser-wakefield accelerator electron beams

    Get PDF
    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented

    Involvement of the Metabotropic Glutamate Receptor mGluR5 in NMDA Receptor-Dependent, Learning-Facilitated Long-Term Depression in CA1 Synapses

    Get PDF
    Learning-facilitated synaptic plasticity describes the ability of hippocampal synapses to respond with persistent synaptic plasticity to the coupling of weak afferent stimulation, which is subthreshold for the induction of plasticity, with a spatial learning experience. The metabotropic glutamate receptor subtype 5 (mGluR5) is critically involved in enabling the persistency of multiple forms of hippocampal synaptic plasticity. We compared the effects of pharmacological allosteric antagonism of mGluR5 in learning-facilitated plasticity with plasticity that had been induced solely by patterned afferent stimulation of the Schaffer collateral pathway to the CA1 stratum radiatum of adult freely behaving rats. Intracerebroventricular injection of the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) had no effect on basal synaptic transmission but significantly prevented both long-term depression (LTD) elicited by electrical stimulation and LTD facilitated by novel object-place configuration learning. NMDA receptor antagonism also prevented learning-facilitated LTD. Habituation to the objects was prevented by MPEP application. Whereas reexposure to the object-place configuration (after 7 days) failed to facilitate LTD in control animals, those who had been treated previously with MPEP expressed LTD, suggesting that inhibition of learning contributed to the initial prevention of LTD. These data support a pivotal role for mGluR5 in both hippocampal LTD and the acquisition of object-place configurations

    Progress Towards Laser Wakefield Acceleration and Applications at the Scottish Centre for the Application of Plasma-based Accelerators (SCAPA)

    Get PDF
    Abstract Laser wakefield accelerators (LWFAs) are promising sources of high brightness particle and radiation beams with many possible applications, ranging from scientific research to medicine, industry and border security. The Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) is a university-based facility employing the use of two high-power, ultrashort pulse lasers to advance research, development and application of laser-plasma accelerators. Here we report on recent advancements in LWFA research at SCAPA and upcoming research programmes to demonstrate proof-of-concept applications of the LWFA.</jats:p

    Laser-plasma-based space radiation reproduction in the laboratory

    Get PDF
    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions

    Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    Get PDF
    Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams

    All-optical density downramp injection in electron-driven plasma wakefield accelerators

    Get PDF
    Injection of well-defined, high-quality electron populations into plasma waves is a key challenge of plasma wakefield accelerators. Here, we report on the first experimental demonstration of plasma density downramp injection in an electron-driven plasma wakefield accelerator, which can be controlled and tuned in all-optical fashion by mJ-level laser pulses. The laser pulse is directed across the path of the plasma wave before its arrival, where it generates a local plasma density spike in addition to the background plasma by tunnelling ionization of a high ionization threshold gas component. This density spike distorts the plasma wave during the density downramp, causing plasma electrons to be injected into the plasma wave. By tuning the laser pulse energy and shape, highly flexible plasma density spike profiles can be designed, enabling dark current free, versatile production of high-quality electron beams. This in turn permits creation of unique injected beam configurations such as counter-oscillating twin beamlets
    corecore