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Laser-plasma-based Space 
Radiation Reproduction in the 
Laboratory
B. Hiddingの, O. Kargerは, T. Königsteinば, G. Pretzlerば, G. G. Manahanの, P. McKennaの, R. Grayの, 

R. Wilsonの, S. M. Wigginsの, G. H. Welshの, A. Beatonの, P. Delinikolasの, D. A. Jaroszynskiの, 

J. B. Rosenzweigぱ, A. Karmakarひ, V. Ferlet-Cavroisび, A. Costantinoび, M. Muschitielloび & 

E. Dalyび

Space radiation is a great danger to electronics and astronauts onboard space vessels┻ The spectral ━ux 
of space electrons┸ protons and ions for example in the radiation belts is inherently broadband┸ but this 
is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we 

reproduced relativistic┸ broadband radiation belt ━ux in the laboratory┸ and used this man┽made space 
radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation 

in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband 

Maxwellian┽type particle ━ux┸ akin to conditions in space┻ In combination with the established sources┸ 
utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as 

complementary space radiation sources can help alleviate the shortage of available beamtime and may 

allow for development of advanced test procedures, paving the way towards higher reliability of space 

missions.

Radiation hardness assessment of onboard electronics – an essential part of every space mission – is ideally 
achieved by reproducing the mission-speciic space radiation environment as accurately as possible1,2. Testing 
in space would be the most realistic method, but is mostly cost prohibitive. Conventional accelerators such as 
linacs and cyclotrons are used instead, which produce well deined, but monoenergetic electron, proton and 
ion lux. However, space radiation for example in the form of “killer” electrons3–5 is very broadband, generally 
describable by power law or exponential functions2. While the production of monoenergetic beams is challenging 
with laser-plasma-accelerators6–10 (LPAs), in contrast producing broadband radiation is the inherent regime of 
LPAs11,12, a unique ability which could be exploited for the beneit of the space radiation testing community13–15.

Results
Here we report on experiments, in which broadband space-level electron and proton lux was produced with 
LPAs having peak laser powers in the P ~ 150 TW to PW range. NASA’s AE8/AP8 and AE9/AP9 models16 were 
used to calculate the typical electron and proton lux at diferent orbits in the van-Allen belts. As a showcase, the 
electron spectral lux at the important GPS satellite orbit in the outer van-Allen belt is given in Fig. 1(a).

To reproduce this broadband van-Allen belt level electron spectral lux, a university lab scale Ti:Sapphire 
laser17 at a power level of P ~ 150 TW was used. he laser pulses were focused to spot sizes in the range of a 
few µ m2 on thin metal foil targets, corresponding to interaction intensities of I ≈  1018–1020 W cm−2. Such 
laser-overdense plasma interaction is one of the most efective and reliable methods to convert laser energy into 
broadband electron lux, and also into protons via the TNSA mechanism18. In this scenario, it is well known that 
the resulting energy E of the accelerated electrons can be approximated by an exponential distribution N =  N0 
exp(− E/kBT), where N is the number of electrons, kB is the Boltzmann constant and T the electron temperature. 
Established scalings by Wilks19, Beg20 and Kluge21, reined by particle-in-cell-simulations, were used to predict the 
efective temperature Tef =  kBT as a function of laser intensity on target. By adjusting the laser intensity to values 
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of I ≈  few 1019 W cm−2, the exponential electron lux was tuned to match the electron spectrum as present in 
the van Allen belt, e.g. Tef ≈  0.6 MeV on the GPS orbit. Figure 2 illustrates the experimental setup. he laser–foil 
interaction produces broadband particle radiation, which was monitored with state-of-the-art diagnostics and 
was used to irradiate various commercial and radiation-hardened optocouplers as devices under test (DUT), see 
Methods section.

Figure  3 demonstrates the successful reproduction of GPS-level electron flux at a laser intensity 
I ≈  4.5 ×  1019 W cm−2, producing electron lux with Tef ≈  0.65 MeV. he agreement is especially good at the 
medium energy range, which is particularly important, whereas the number of high energy electrons is low due 
to the exponential decrease, and the numerous low energy electrons on the other hand would be absorbed by the 
spacecrat shielding.

A second set of campaigns at the VULCAN PW-laser aimed at the production of broadband space protons. At 
these much higher laser pulse powers, protons with energies up to E ≈  20 MeV were generated and used to irra-
diate a further set of optocouplers, as shown in Fig. 4. Again, the measured spectra retrieved from radiochromic 
ilm stacks have exponential slope and are particularly useful to reproduce certain similar space spectral lux on 
various orbits ranging from LEO to the proton-rich inner van-Allen belt at 5 k km altitude and beyond.

he irradiation of the optocouplers by reproduction of either the outer van-Allen belt electron lux or the 
inner van Allen belt proton lux has led to signiicant degradation of optocoupler performance, making use of 
state-of-the-art testing procedures adapted from the European Space Agency. his is shown in Fig. 5, where the 
current transfer ratio (CTR) of Vishay SFH6345 optocouplers ater applying broadband electron and proton 

a) b)

Figure 1. Electron lux in the inner van Allen belt according to the NASA AE9 model at various orbits. 
In (a), the lux on GPS orbit is given via contour plots as a function of orbital time, and in (b) the maximum 
spectral lux on various orbits from LEO to HEO is plotted, demonstrating the broadband energy range up to 
E ~ 10 MeV. he GPS electron spectrum at maximum lux from (a) is shown in (b) with the orange plot, and 
is used as a showcase for the experiments. he lux axis is logarithmic, indicating that the shape can oten be 
approximated by exponential distribution functions.
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Figure 2. Experimental setup with 150 TW Ti:sapphire laser. he laser-solid-interaction produces 
broadband, broad-angle particle radiation with electrons in the 1–10 MeV range; protons are eliminated by 
a thin protection foil directly in front of the DUTs (not shown here, see methods). he electrons irradiate 
optocouplers (located 5 cm away from the target foil) and are then detected on an image plate stack to retrieve 
the spatially resolved temperatures and divergence. he high-resolution shadow of the optocouplers on a front 
image plate is demonstrated on the right hand side; single optocoupler pins and detailed internal structure 
of the devices are clearly resolved. A central hole allowed on-axis electrons to enter a permanent magnet 
spectrometer where simultaneous measurement was obtained on an additional image plate, and a Lanex 
scintillating screen.
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luences of up to ≈ 7 ×  109 e-/cm2, and ≈ 5.3 ×  1010 p-/cm2, respectively, shows degradation of up to 4% when 
compared to unirradiated reference optocouplers.

Discussion
We have shown that LPAs can be used to accurately reproduce broadband inner- and outer van Allen belt electron 
and proton lux, and we used this lab-made space radiation to systematically characterise realistic degradation 
of space electronics. hese measurements demonstrate for the irst time that laser-plasma-accelerators are viable 
tools for space radiation testing and add a novel capability to the arsenal of ground-based testing techniques. It is 
expected that the steady rapid progress in laser-plasma accelerator technology will allow the energy and lux range 
of accurately reproducible space radiation to be further extended. For example, the radiation belts of other mag-
netised planets such as Jupiter, Saturn, Uranus and Neptune22 are also populated with energetic electrons, protons 
and ions. Because the magnetic ield of these planets is partially much stronger than that of the Earth, much 
higher energy electrons are generated, in case of Jupiter, as far as is known typically up to 50 MeV. Exploratory 
missions in this harsh Jovian radiation environment have a high scientiic priority, for example because of the 
possibility of water on Io23. While such energy distributions can also be reached with laser-overdense interac-
tion using higher laser energies and intensities, this higher electron energy range is better accessible when using 
underdense, gaseous targets24. Improvements both on the target side (e.g. tape drives for quasi-continuous irradi-
ation) and laser technology side (e.g., kHz repetition rate systems) will furthermore lead to increased accelerator 

Figure 3. Calculated (black (AE8) and blue (AE9) lines), PIC-simulated (red) and experimentally obtained 
(green) electron lux for GPS orbit. By ine-tuning the laser-plasma-interaction at an intensity I ≈  4.5 ×  1019 W cm−2 
at an incidence angle of 45°, the experimentally obtained electron spectral lux was tuned to match the space-borne 
van-Allen belt spectral lux.

Figure 4. Results of proton irradiation at VULCAN. (a) compares the retrieved proton lux (solid black line, 
let y-axis) with the broadband lux at LEO and at higher altitudes of 5 k and 10 k km predicted by the AP9 
model (dashed lines, right y-axis), and (b) shows the raw radiography images generated by the proton lux on 
the proton-sensitive radiochromic ilm (RCF) stack.
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repetition rates and therefore to higher average lux and in turn to accelerated testing times. Higher repetition 
rates also allow to decrease peak lux levels, or in the other extreme high peak luxes (close to target) could be 
useful to study collective or nonlinear radiation efects15. As chip structure size continues to decrease, single event 
efects (SEE) in microelectronics generated by electrons are gaining importance25,26. In parallel, also lower energy 
protons and ions are attaining increased interest for space radiation efects27. Both electrons in a wide energy 
range up to hundreds of MeV, and lower to moderate energy protons (few to tens of MeV-scale) and ions are very 
well accessible by today’s typical LPAs of the few hundred TW class. Record values for peak electron energies 
obtainable with LPA’s exceed ~4 GeV28, and can reach the hundred MeV level for protons with today’s highest 
power laser systems. While for example the South Atlantic Anomaly (SAA) generates low-altitude protons of 
energies exceeding this current limit considerably29, such proton energy levels are increasingly accessible with 
LPA’s, too30, although at the cost of repetition rate. Finally, while the reported experiments have been carried 
through with electronics as DUTs, space radiobiology, a topic which has recently been highlighted during Orion 
spacecrat’s Exploration Test Flight-1, can also be studied with LPAs, and we believe that the accurate reproduc-
tion of space radiation will contribute substantially to increase future mission reliability and safety.

Methods
Electron production┸ measurement and irradiation at Arcturus のひね TW┽laser┻ Ti:sapphire laser 
pulses with the Arcturus laser system at University of Düsseldorf were used with pulse durations down to 23 fs 
and efective pulse powers up to ~150 TW to irradiate thin ~25 µ m Al foils ater being strongly focused to spot 
sizes down to ~6 µ m2 with an f/2 parabola, yielding intensities of up to I ≈  8 ×  1019 W cm−2. he energy deposition 
on the target Al foil of thickness ~25 µ m eventually leads to local melting of the foil material (see Fig. 2, top let), 
and the target foil is therefore shited to a new fresh spot ater each shot with a translation stage to provide an 
uncompromised surface. All of-axis protons are iltered out by a ~280 µ m thick aluminum foil (not shown in the 
igure) directly in front of the DUT’s, which are located 5 cm downstream of the interaction point. he electron 
beam output was tuned by changing the laser energy, the intensity on target by moving the target relative to the 
focus (Rayleigh length zR ~ 30 µ m), and the incidence angle (mostly at 45°). he laser-plasma interaction scalings 
predict that a laser intensity on target in the range of I ≈  few 1019 W cm−2 is suitable to reproduce the exponential 
space electron lux with temperatures Tef ≈  0.6 MeV. To reine these predictions, particle-in-cell simulations were 
carried out. he on-axis electron spectrum was measured by a state-of-the-art permanent magnet based spec-
trometer using image plates and Lanex screens, which were monitored with CCD cameras as online diagnostics. 
An 8 cm ×  8 cm area image plate stack similar as in ref. 30 in target normal direction behind the optocouplers 
provided detailed information on the divergence of the produced electron beams and the integrated luence. he 
divergence amounted to approximately 600 mrad for lower energy electrons down to nearly 400 mrad for higher 
energy electrons. Various other diagnostics (further electron spectrometers and image plate stacks) were used 
to monitor electron lux in addition to the target normal direction to give a nearly 360° radiation topology (not 
shown). To increase the eiciency of the radiation source, these other directions which partially exhibit substan-
tial lux values of broadband radiation, can also be harvested for DUT irradiation.

Proton production, measurement and irradiation at VULCAN PW. The VULCAN laser at 
Rutherford Appleton Laboratory operated at an energy of ~150 J on target, delivering a peak intensity on target 
of I ≈  4 ×  1020 W/cm2 at an incidence angle of 0°. A plasma-mirror was used to reduce the preplasma on the tar-
get foil, which was 20 µ m thick Cu. Measurement of the proton lux was performed using stacked radiochromic 

Figure 5. Optocoupler performance degradation ater laser-plasma-produced electron and proton 
irradiation. Shown is the current transfer ratio (CTR) degradation of Vishay SFH6345 optocouplers ater 
irradiation with van-Allen belt type electron luence of 3 ×  109 e-/cm2 up to 7 ×  109 e-/cm2 (dashed grey ellipse) 
and proton luence of 5.3 ×  1010 p-/cm2, demonstrating signiicant degradation when compared to unirradiated 
benchmark optocouplers.
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dosimetry ilm (RCF), consisting of (front to back) 13 µ m Al protective ilter foil, 63 µ m Al optocoupler mount 
and ilter foil, followed by RCF ilm and Mylar ilters suitable to resolve the proton spectrum (see Fig. 4).

Particle-in-cell simulations. 2D PIC-simulations where carried through with the code EPOCH in the 
PICS Laboratory Astro at Leibniz Computing Centre Munich, with a simulation box size of 40 µ m ×  20 µ m and 
a 4000 ×  1000 grid. he simulated interaction represents the experimental setup with a laser pulse duration of 
τ =  23 fs and a central wavelength of λ  =  0.8 µ m being focused to a spot size of w0 =  3 µ m on 30 µ m thick Al at an 
incidence angle of 45°. he target was modeled by a tiny exponential ramp of 0.5 µ m thickness to account for the 
preplasma, then ramping up to 30 times critical density nc. A range of intensities have been scanned in various 
runs, and the electron spectrum depicted in Fig. 3 which its best the GPS spectrum is obtained at an intensity of 
I =  4.5 ×  1019 W cm−2.

Optocoupler handling and performance testing. Various types of optocouplers were used as DUTs in 
the experiments. Shown here is the performance degradation of Vishay SFH6345 8-pin optocouplers, using the 
current transfer ratio (CTR) between input and output current. he devices partially received diferent amounts 
of shots. Testing device #3 and #4 were irradiated with 478 electron pulses in total, the highest amount of shots of 
all tested devices, thus showing the most signiicant decrease in the current transfer ratio. he error bars in the ig-
ure represent the standard deviation from the mean value. his key performance parameter was measured before 
and ater irradiation campaigns in a climatised environment at ESTEC, using an Agilent Test Fixture 16442A in 
combination with the precision semiconductor parameter analyzer Agilent 4156C. he CTR was measured at 
input currents of 100 µ A and 1 mA, respectively. Non-irradiated optocouplers were used as reference. he perfor-
mance testing was conducted in accordance with state-of-the-art ESA testing standards.

Data Availability. he output data from this research is available and can be accessed at: http://dx.doi.
org/10.15129/be393aa3-9e35-47c5-aae4-b2444db7893.
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