3,126 research outputs found

    Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders.

    Get PDF
    Apolipoprotein (apo) E was initially described as a lipid transport protein and major ligand for low density lipoprotein (LDL) receptors with a role in cholesterol metabolism and cardiovascular disease. It has since emerged as a major risk factor (causative gene) for Alzheimer's disease and other neurodegenerative disorders. Detailed understanding of the structural features of the three isoforms (apoE2, apoE3, and apoE4), which differ by only a single amino acid interchange, has elucidated their unique functions. ApoE2 and apoE4 increase the risk for heart disease: apoE2 increases atherogenic lipoprotein levels (it binds poorly to LDL receptors), and apoE4 increases LDL levels (it binds preferentially to triglyceride-rich, very low density lipoproteins, leading to downregulation of LDL receptors). ApoE4 also increases the risk for neurodegenerative diseases, decreases their age of onset, or alters their progression. ApoE4 likely causes neurodegeneration secondary to its abnormal structure, caused by an interaction between its carboxyl- and amino-terminal domains, called domain interaction. When neurons are stressed or injured, they synthesize apoE to redistribute cholesterol for neuronal repair or remodeling. However, because of its altered structure, neuronal apoE4 undergoes neuron-specific proteolysis, generating neurotoxic fragments (12-29 kDa) that escape the secretory pathway and cause mitochondrial dysfunction and cytoskeletal alterations, including tau phosphorylation. ApoE4-associated pathology can be prevented by small-molecule structure correctors that block domain interaction by converting apoE4 to a molecule that resembles apoE3 both structurally and functionally. Structure correctors are a potential therapeutic approach to reduce apoE4 pathology in both cardiovascular and neurological disorders

    Apolipoprotein E and Atherosclerosis: From Lipoprotein Metabolism to MicroRNA Control of Inflammation.

    Get PDF
    Apolipoprotein (apo) E stands out among plasma apolipoproteins through its unprecedented ability to protect against atherosclerosis. Although best recognized for its ability to mediate plasma lipoprotein clearance in the liver and protect against macrophage foam cell formation, our recent understanding of the influence that apoE can exert to control atherosclerosis has significantly widened. Among apoE's newfound athero-protective properties include an ability to control exaggerated hematopoiesis, blood monocyte activation and aortic stiffening in mice with hyperlipidemia. Mechanisms responsible for these exciting new properties extend beyond apoE's ability to prevent cellular lipid excess. Rather, new findings have revealed a role for apoE in regulating microRNA-controlled cellular signaling in cells of the immune system and vascular wall. Remarkably, infusions of apoE-responsive microRNA mimics were shown to substitute for apoE in protecting against systemic and vascular inflammation to suppress atherosclerosis in mice with hyperlipidemia. Finally, more recent evidence suggests that apoE may control the release of microvesicles that could modulate cellular signaling, inflammation and atherosclerosis at a distance. These exciting new findings position apoE within the emerging field of intercellular communication that could introduce new approaches to control atherosclerosis cardiovascular disease

    Apolipoprotein E related Co-Morbidities and Alzheimer’s disease

    Get PDF
    The primary goal of advancement in clinical services is to provide a health care system that enhances an individual’s quality of life. Incidence of diabetes mellitus, cardiovascular disease and associated dementia coupled with the advancing age of the population, have led to an increase in the worldwide challenge to the healthcare system. In order to overcome these challenges prior knowledge of common, reliable risk factors and their effectors is essential. The oral health constitutes one such relatively unexplored but indispensable risk factor for aforementioned co-morbidities, in the form of poor oral hygiene and tooth loss during aging. Behavioural traits such as low education, smoking, poor diet, neglect of oral health, lack of exercise, and hypertension are few of the risk factors that are shared commonly amongst these conditions. In addition, common genetic susceptibility traits such as the apolipoprotein ɛ gene, together with an individual’s life style can also influence the development of co-morbidities such as periodontitis, atherosclerosis/stroke, diabetes, and Alzheimer’s disease. This review specifically addresses the susceptibility of apolipoprotein ε gene allele 4 as the plausible commonality for the etiology of co-morbidities that eventually result from periodontal diseases and ultimately progress to dementia

    The D9N, N291S and S447X variants in the lipoprotein lipase (LPL) gene are not associated with Type III Hyperlipidemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type III hyperlipidemia (Type III HLP) is associated with homozygosity for the ε2 allele of the APOE gene. However only about 10% of ε2 homozygotes develop Type III HLP and it is assumed that additional genetic and/or environmental factors are required for its development. Common variants in the LPL gene have been proposed as likely genetic co-factors.</p> <p>Methods</p> <p>The frequency of the LPL SNPs D9N, N291S and S447X in 100 patients with hyperlipidemia and APOE2/2 genotype has been determined and compared to that in healthy blood donors and patients with hyperlipidemia.</p> <p>Results</p> <p>There were no statistically significant difference in the frequencies of the variants between APOE2/2 patients and controls.</p> <p>Conclusion</p> <p>It is unlikely that the D9N, N291S or S447X variants in the LPL gene play an important role in the development of Type III HLP.</p

    Recent Advances in Hepatitis C Virus Cell Entry

    Get PDF
    More than 170 million patients worldwide are chronically infected with hepatitis C virus (HCV). Prevalence rates range from 0.5% in Northern European countries to 28% in some areas of Egypt. HCV is hepatotropic, and in many countries chronic hepatitis C is a leading cause of liver disease including fibrosis, cirrhosis and hepatocellular carcinoma. HCV persists in 50–85% of infected patients, and once chronic infection is established, spontaneous clearance is rare. HCV is a member of the Flaviviridae family, in which it forms its own genus. Many lines of evidence suggest that the HCV life cycle displays many differences to that of other Flaviviridae family members. Some of these differences may be due to the close interaction of HCV with its host’s lipid and particular triglyceride metabolism in the liver, which may explain why the virus can be found in association with lipoproteins in serum of infected patients. This review focuses on the molecular events underlying the HCV cell entry process and the respective roles of cellular co-factors that have been implied in these events. These include, among others, the lipoprotein receptors low density lipoprotein receptor and scavenger receptor BI, the tight junction factors occludin and claudin-1 as well as the tetraspanin CD81. We discuss the roles of these cellular factors in HCV cell entry and how association of HCV with lipoproteins may modulate the cell entry process

    APOE polymorphism and its effect on plasma C-reactive protein levels in a large general population sample

    Get PDF
    The literature on association between apolipoprotein E (APOE) gene variations and plasma levels of C-reactive protein (CRP) remains inconsistent, mainly due to low statistical power of previous studies. To clarify this question, we analysed data from large population sample of randomly selected individuals from 7 Czech towns (2886 males and 3344 females, the HAPIEE study). In both males and females, the lowest levels of plasma hsCRP were observed in the carriers of the APOE ε4ε4 and ε4ε3 genotypes. The median (inter-quartile range, IQR) concentration of hsCRP in carriers of the most common APOE ε3ε3 genotype (two thirds of participants) was 1.13 (IQR 0.56; 2.33) mg/l in men and 1.23 (IQR 0.61; 2.65) mg/l in women, compared with 0.72 (IQR 0.61; 0.86) mg/l in male and 0.72 (IQR 0.61-0.85) mg/l in female carriers of APOE ε4ε3/ε4ε4 genotypes; the differences were statistically significant (p<0.001). The association between APOE and CRP was not materially affected by adjustment for age, sex, history of cardiovascular disease or cardiovascular risk factors. This study, the largest to date, provides robust evidence of an association between plasma hsCRP and the APOE genotype, an association not explained by history of cardiovascular disease nor its risk factors

    ApoE Polymorphism May Determine Low-Density Lipoprotein Cholesterol Level in Association with Obesity and Metabolic Syndrome in Postmenopausal Korean Women

    Get PDF
    ∙ The authors have no financial conflicts of interest. Purpose: We investigated how serum low-density lipoprotein (LDL) level is related to various isoforms of apolipoprotein (ApoE) polymorphism in association with obesity and metabolic syndrome. Materials and Methods: We gathered total 332 sample of postmenopausal Korean women and analyzed ApoE isoforms, serum lipid level including LDL, blood pressure, fasting glucose, and anthropometry. The relationship between ApoE isoforms and serum lipid level, metabolic syndrome, and obesity was investigated. Results: Six ApoE isoforms were found, ApoE2 [E2/2 (n=1), E2/3 (n=54), E2/4 (n=14)], ApoE3 (E3/3, n=200), ApoE4 [E3/4 (n=55), and E4/4 (n=8)]. The prevalence of metabolic syndrome and obesity showed higher ApoE3 isoform than that of other isoforms. In additon, ApoE3 isoform was related to higher serum LDL and total cholesterol level than to ApoE2 isoform. The odds ratio of having the highest LDL cholesterol quartile in ApoE3 with obesity, compared to ApoE2 without obesity, was 3.46 [95 % confidence interval (CI); 1.07-11.14, p=0.037], and odds ratio of ApoE3 with metabolic syndrome compared to ApoE2 without metabolic syndrome was 5.06 (95 % CI; 1.14-22.29, p=0.037). Serum LDL cholesterol was positively associated with obesity or metabolic syndrome in ApoE3 isoform. Conclusion: This study suggests that obesity or metabolic syndrome risk should be effectively managed in ApoE3 isomform groups to reduce serum LDL in postmenopausal Korean women

    Modifications to the Patient Rule-Induction Method that utilize non-additive combinations of genetic and environmental effects to define partitions that predict ischemic heart disease

    Full text link
    This article extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (Genet Epidemiol 31:515–527) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2,258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors. Genet. Epidemiol . 2009. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62158/1/20383_ftp.pd
    • …
    corecore