1,004 research outputs found
Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato
Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins
Circuitry rewiring directly couples competence to predation in the gut dweller Streptococcus salivarius
Small distortions in transcriptional networks might lead to drastic phenotypical changes, especially in cellular developmental programs such as competence for natural transformation. Here, we report a pervasive circuitry rewiring for competence and predation interplay in commensal streptococci. Canonically, in streptococci paradigms such as Streptococcus pneumoniae and Streptococcus mutans, the pheromone-based two-component system BlpRH is a central node that orchestrates the production of antimicrobial compounds (bacteriocins) and incorporates signal from the competence activation cascade. However, the human commensal Streptococcus salivarius does not contain a functional BlpRH pair, while the competence signaling system ComRS directly couples bacteriocin production and competence commitment. This network shortcut might underlie an optimal adaptation against microbial competitors and explain the high prevalence of S. salivarius in the human digestive tract. Moreover, the broad spectrum of bacteriocin activity against pathogenic bacteria showcases the commensal and genetically tractable S. salivarius species as a user-friendly model for competence and bacterial predation
Aislamiento y caracterización de cepas de Bacillus asociadas al cultivo del arroz (Oryza sativa L.)
El presente trabajo muestra el aislamiento y la caracterización de bacterias del género Bacillus provenientes de la rizosfera del cultivo del arroz (Oryza sativa L.) variedad J-104 utilizando el modelo microcosmos. Se realizaron además aislamientos directos del suelo que se encontraba cultivado con la variedad INCA LP-5. Se llevó a cabo la caracterización fisiológica de 13 aislados en cuanto a la producción de compuestos indólicos, la determinación de antagonismo frente a hongos fitopatógenos Del arroz (Alternaria solani, Pyricularia grisea, Fusarium sp. y Curvularia sp.), la capacidad de solubilización de fosfatos y la determinación cualitativa de la fijación de nitrógeno. Teniendo en cuenta los resultados obtenidos se seleccionaron a través de un análisis de conglomerado (cluster), los aislados más promisorios para su identificación utilizando las pruebas morfológicas, tintoriales y bioquímicas propuestas por el Manual de Bergey y la secuenciación del ADN ribosómico 16S
TasA-tasB, a new putative toxin-antitoxin (TA) system from Bacillus thuringiensis pGI1 plasmid is a widely distributed composite mazE-doc TA system
BACKGROUND: Post-segregational killing systems are present in a large variety of microorganisms. When found on plasmids, they are described as addiction systems that act to maintain the plasmid during the partitioning of the cell. The plasmid to be maintained through the generations harbours a group of two genes, one coding for a stable toxin and the other coding for an unstable antitoxin that inhibits the effects of the toxin. If, during cell division, the plasmid is lost, the toxin and antitoxin proteins present in the cytosol cease to be newly expressed. The level of unstable antitoxin protein then rapidly decreases, leaving the toxin free to act on the cellular target, leading to cell death. Consequently, only cells harbouring the plasmid can survive. RESULTS: The pGI1 plasmid of Bacillus thuringiensis H1.1 harbours a group of two genes, one showing similarities with the Doc toxin of the phd-doc toxin-antitoxin system, potentially coding for a toxin-antitoxin system. Attempts were made to clone this putative system in the Gram-negative host Escherichia coli. The putative antitoxin tasA was easily cloned in E. coli. However, although several combinations of DNA fragment were used in the cloning strategy, only clones containing a mutation in the toxin gene could be recovered, suggesting a toxic activity of TasB. An exhaustive search was carried out in order to index genes homologous to those of the putative tasA-tasB system among microorganisms. This study revealed the presence of this system in great number and in a large variety of microorganisms, either as tasA-tasB homologues or in association with toxins (or antitoxins) from other TA systems. CONCLUSION: In this work, we showed that the pGI1 plasmid of B. thuringiensis H1.1 harbours genes resembling a toxin-antitoxin system, named tasA-tasB for thuringiensis addiction system. This system appeared to be functional but unregulated in E. coli. Bioinformatics studies showed that the tasAB system is present on plasmids or chromosomes of a large variety of microorganisms. Moreover, the association between TasA antitoxin with toxins other than TasB (and vice versa) revealed the composite and modular nature of bacterial TA systems
IS4 family goes genomic
<p>Abstract</p> <p>Background</p> <p>Insertion sequences (ISs) are small, mobile DNA entities able to expand in prokaryotic genomes and trigger important rearrangements. To understand their role in evolution, accurate IS taxonomy is essential. The IS<it>4 </it>family is composed of ~70 elements and, like some other families, displays extremely elevated levels of internal divergence impeding its classification. The increasing availability of complete genome sequences provides a valuable source for the discovery of additional IS<it>4 </it>elements. In this study, this genomic database was used to update the structural and functional definition of the IS<it>4 </it>family.</p> <p>Results</p> <p>A total of 227 IS<it>4</it>-related sequences were collected among more than 500 sequenced bacterial and archaeal genomes, representing more than a three fold increase of the initial inventory. A clear division into seven coherent subgroups was discovered as well as three emerging families, which displayed distinct structural and functional properties. The IS<it>4 </it>family was sporadically present in 17 % of analyzed genomes, with most of them displaying single or a small number of IS<it>4 </it>elements. Significant expansions were detected only in some pathogens as well as among certain extremophiles, suggesting the probable involvement of some elements in bacterial and archaeal adaptation and/or evolution. Finally, it should be noted that some IS<it>4 </it>subgroups and two emerging families occurred preferentially in specific phyla or exclusively inside a specific genus.</p> <p>Conclusion</p> <p>The present taxonomic update of IS<it>4 </it>and emerging families will facilitate the classification of future elements as they arise from ongoing genome sequencing. Their narrow genomic impact and the existence of both IS-poor and IS-rich thriving prokaryotes suggested that these families, and probably ISs in general, are occasionally used as a tool for genome flexibility and evolution, rather than just representing self sustaining DNA entities.</p
Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future
Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here
Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727
BACKGROUND: Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. RESULTS: The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI) containing the anthrax capsule genes. CONCLUSION: The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis serovar konkukian strain 97-27
From the selfish gene to selfish metabolism: revisiting the central dogma
The standard representation of the Central Dogma (CD) of Molecular Biology conspicuously ignores metabolism. However, both the metabolites and the biochemical fluxes behind any biological phenomenon are encrypted in the DNA sequence. Metabolism constrains and even changes the information flow when the DNA-encoded instructions conflict with the homeostasis of the biochemical network. Inspection of adaptive virulence programs and emergence of xenobiotic-biodegradation pathways in environmental bacteria suggest that their main evolutionary drive is the expansion of their metabolic networks towards new chemical landscapes rather than perpetuation and spreading of their DNA sequences. Faulty enzymatic reactions on suboptimal substrates produce reactive oxygen species (ROS), which fosters DNA diversification and eventually couples catabolism of the new chemicals to growth. All this calls for a revision of the CD in which metabolism (rather than DNA) has the leading role.The work in Author’s laboratory is supported by generous grants of the Spanish Ministry of Science and Innovation (CONSOLIDER), by contracts of the Framework Program of the EU (MICROME, ST-FLOW), the European Research Council (ARISYS) and by Funds of the Autonomous Community of Madrid (PROMT Program).Peer reviewe
- …
