347 research outputs found

    RESPONSE OF SUB1 INTROGRESSION LINES OF RICE TO VARIOUS FLOODING CONDITIONS

    Get PDF
    Two types of floods can be happen in rice crops, i.e. flash floods and  stagnant floods. Flash floods cause complete submergence for up to 2 weeks, while stagnant floods (SF) could partially submerge part of rice  plant. To overcome yield loss due to the floods, introgression of SUB1 gene, known as a gene suppressing cell elongation and carbohydrate  metabolism, to rice genotype can increase plant tolerance to complete submergence for 10 days or more. The study aimed to evaluate the response of 18 rice genotypes, including the recently developed sixth pair SUB1 near isogenic lines (NILs) of mega-rice varieties (Swarna, Sambha Mahsuri, IR64, TDK1, BR11, and CR1009), to various flooding conditions. The rice genotypes were planted at field ponds at Los Banos, Philippines, in the wet season (WS) of 2009. The treatments were 15 days  submergence, SF, SF follows submergence and normal conditions. Each treatment was arranged in completely randomized block design with threereplications. The results showed that the SUB1 introgression rice lines had higher survival compared to the non-SUB1 and did not much elongate their shoots during submergence. Nevertheless, under SF the rice genotypes should elongates their shoots to allow restoring contact with the air. SF and SF follows submergence decreased the panicle number, grainnumber per panicle and panicle fertility. Consequently, the yield declined. It suggests that sensitive genotypes are mostly sourcelimited during grain filling. The SUB1 introgression lines had higher chlorophyll concentration and less depletion in soluble sugar and starch after submergence. Under SF, soluble sugar and starch contents between the SUB1 NILs and  non-SUB1 lines were not significantly different. Introgression of the SUB1 into high-yielding varieties improved submergence tolerance without affecting yield potential. The study indicates that introgression of the SUB1 into taller type rice varieties should be done to compensate the effect of suppressed elongation

    Bridging sd1 molecular knowledge with recent breeding strategies for the improvement of traditional rice varieties - a japonica case-study

    Get PDF
    The rice semidwarfing gene, sd1, also known as the “green revolution gene”, has been studied intensively due to its contribution to the increase of crop production. Although sd1 breeding was extensively applied since the 1960s, the recent advances in the molecular basis of this gene alloweddesigning a more precise breeding strategy - marker assisted backcrossing (MAB) - to track sd1 introgression in two traditional rice varieties. For selection of sd1 plants we first confirmed the efficiency of specific markers based on Os200 x 2 gene sequence. Background selection was alsoperformed with the help of microsatellites markers (SSR) and a total of 7 breeding lines were recovered containing a higher percentage of recurrent parent genome (RPG). Analysis of Covariance (ANCOVA) using mean progenitor plant height as covariate was performed to compare several agronomic and quality-related parameters in two different environments. The results suggest that plant height differs significantly between the two environments F(1, 220) = 155.336; p < 0.001. From the total variability ofplant height we could conclude that 73% is due to the genotype, while 10.4% depends on the environment. In addition, the percentage of RPG seems negatively correlated with plant height (p < 0.005). MAB and background selection thus revealed as useful tools to assist breeding forsemidwarfism in traditional rice varieties

    Genetic Parameters of Some Characters and Their Correlation with Rice Grain Yield in Relation to the Plant Adaptability to Semi-Deep Stagnant Flooding Condition

    Full text link
    Stagnant flooding (SF) is a major problem in floodprone rice ecosystem where the depth of flood water ranging from 20-50 cm in the entire seasons. In Indonesia this kind of water stress can be found in swampy basin area or Rawa Lebak. A study was conducted to determine the genetic parameters related to rice plant adaptability to SF. Eighteen rice genotypes including the recently developed 6 pairs of SUB1 near isogenic lines (NILs) of widely planted varieties and checks were tested under 50 cm depth of SF in the 2009 wet season at Los Banos, Philippines. The results showed that most of genotypes showed different responses on morphological and agronomical characters under SF and normal conditions. Most of the SUB1 NILs had lower grain yields than their respective parents. This was because SUB1 suppressed shoot elongation and less restoring contact with the air. Some SUB1 lines such as PSBRc68 and IR70181-32, however, produced high grain yields under this condition. Under SF condition, rice genotypes required shoot elongation to allow restoring contact with the air, therefore the traits that related to growth attributes such as shoot weight, leaf weight, LAI, stem diameter, plant high, and tiller number were strongly correlated with the grain yields. These traits also had broad genetic variability, high heritability, and strong correlation with grain yields. Selection under real stress SF conditions was effective to obtain high yielding genotypes and also tolerant

    Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    Get PDF
    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs

    Bridging sd1 molecular knowledge with recent breeding strategies for the improvement of traditional rice varieties - a japonica case-study

    Get PDF
    The rice semidwarfing gene, sd1, also known as the “green revolution gene”, has been studied intensively due to its contribution to the increase of crop production. Although sd1 breeding was extensively applied since the 1960s, the recent advances in the molecular basis of this gene allowed designing a more precise breeding strategy - marker assisted backcrossing (MAB) - to track sd1 introgression in two traditional rice varieties. For selection of sd1 plants we first confirmed the efficiency of specific markers based on Os200 x 2 gene sequence. Background selection was also performed with the help of microsatellites markers (SSR) and a total of 7 breeding lines were recovered containing a higher percentage of recurrent parent genome (RPG). Analysis of Covariance (ANCOVA) using mean progenitor plant height as covariate was performed to compare several agronomic and quality-related parameters in two different environments. The results suggest that plant height differs significantly between the two environments F(1, 220) = 155.336; p < 0.001. From the total variability of plant height we could conclude that 73% is due to the genotype, while 10.4% depends on the environment. In addition, the percentage of RPG seems negatively correlated with plant height (p < 0.005). MAB and background selection thus revealed as useful tools to assist breeding for semidwarfism in traditional rice varieties

    Introgression of blast resistance genes into the elite rice variety MR263 through marker-assisted backcrossing

    Get PDF
    BACKGROUND: Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL). The objective was to introgress these blast resistance genes into the background of MR263 using marker-assisted backcrossing with both foreground and background selection. RESULTS: Improved MR263-BR-3-2, MR263-BR-4-3, MR263-BR-13-1 and MR263-BR-26-4 lines carrying the Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 QTL were developed using the simple sequence repeat (SSR) markers RM5961 and RM263 (linked to the blast resistance genes and QTL) for foreground selection and a collection of 65 polymorphic SSR markers for background selection in backcrossed and selfed generations. A background analysis revealed that the highest rate of recurrent parent genome recovery was 96.1% in MR263-BR-4-3 and 94.3% in MR263-BR-3-2. CONCLUSION: The addition of blast resistance genes can be used to improve several Malaysian rice varieties to combat this major disease

    The molecularization of public sector crop breeding: progress, problems, and prospects

    Get PDF
    Molecular markers and genetic maps are available for most important food crops. Marker-trait associations have been established for a diverse array of traits in these crops, and research on marker/quantitative trait loci (QTL) validation and refinement is increasingly common. Researchers are now routinely using candidate gene-based mapping and genome-wide linkage disequilibrium and association analysis in addition to classical QTL mapping to identify markers broadly applicable to breeding programs. Marker-assisted selection (MAS) is practiced for enhancing various host plant resistances, several quality traits, and a number of abiotic stress tolerances in many well-researched crops. Markers are also increasingly used to transfer yield or quality- enhancing QTL alleles from wild relatives to elite cultivars. Large-scale MAS-based breeding programs for crops such as rice, maize, wheat, barley, pearl millet, and common bean have already been initiated worldwide. Advances in "omics" technologies are now assisting researchers to address complex biological issues of significant agricultural importance: modeling genotype-by-environment interaction; fine-mapping, cloning, and pyramiding of QTL; gene expression analysis and gene function elucidation; dissecting the genetic structure of germplasm collections to mine novel alleles and develop genetically structured trait-based core collections; and understanding the molecular basis of heterosis. The challenge now is to translate and integrate this knowledge into appropriate tools and methodologies for plant breeding programs. The role of computational tools in achieving this is becoming increasingly important. It is expected that harnessing the outputs of genomics research will be an important component in successfully addressing the challenge of doubling world food production by 2050

    Characterization of four rice mutants with alterations in the defence response pathway

    Full text link
    SUMMARY A fast-neutron mutagenized population of rice seedlings was screened with Magnaporthe grisea, the causal agent of rice blast disease, to identify mutants with alterations in the defence response. Three mutant lines, ebr1, ebr2 and ebr3 (enhanced blast resistance) were identified that display enhanced resistance to M. grisea. ebr1 and ebr3 also confer enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). ebr3 develops a lesion mimic (LM) phenotype upon inoculation with M. grisea, and the phenotype is also induced by a shift in environmental conditions. The fourth mutant line, ncr1 (necrosis in rice), has an LM phenotype under all conditions tested and lacks enhanced resistance to either M. grisea or Xoo. Complementation testing using the mutant lines ebr3 and ncr1 indicates that the ebr3 and ncr1 loci are nonallelic and recessive. ebr1 and ebr2 display no alterations in expression of the rice pathogenesis-related (PR) genes PBZ1 and PR1, compared to wild-type CO39. ebr3 has an elevated expression of PBZ1 and PR1 only in tissue displaying the LM phenotype. ncr1 strongly expresses PBZ1 in tissue displaying the LM phenotype, whereas PR1 expression in this tissue is similar to wild-type CO39
    corecore