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Molecular markers and genetic maps are available for most important food

crops. Marker‐trait associations have been established for a diverse array of

traits in these crops, and research on marker/quantitative trait loci (QTL)

validation and refinement is increasingly common. Researchers are now rou-

tinely using candidate gene‐based mapping and genome‐wide linkage disequi-
librium and association analysis in addition to classical QTL mapping to

identify markers broadly applicable to breeding programs. Marker‐assisted
selection (MAS) is practiced for enhancing various host plant resistances,

several quality traits, and a number of abiotic stress tolerances in many well‐
researched crops. Markers are also increasingly used to transfer yield or

quality‐ enhancing QTL alleles from wild relatives to elite cultivars. Large‐
scale MAS‐based breeding programs for crops such as rice, maize, wheat,

barley, pearl millet, and common bean have already been initiated worldwide.

Advances in ‘‘omics’’ technologies are now assisting researchers to address

complex biological issues of significant agricultural importance: modeling

genotype‐by‐environment interaction; fine‐mapping, cloning, and pyramiding

of QTL; gene expression analysis and gene function elucidation; dissecting

the genetic structure of germplasm collections to mine novel alleles and

develop genetically structured trait‐based core collections; and understanding

the molecular basis of heterosis. The challenge now is to translate and integrate

this knowledge into appropriate tools and methodologies for plant

breeding programs. The role of computational tools in achieving this is

becoming increasingly important. It is expected that harnessing the outputs of

genomics research will be an important component in successfully addressing

the challenge of doubling world food production by 2050. # 2007, Elsevier Inc.
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I. INTRODUCTION TO GLOBAL FOOD PRODUCTION
AND MAJOR BREEDING CHALLENGES
Worldwide cereal, legume, oilseed, root and tuber, and plantain and

banana crops are grown annually on 1068 million ha with a total production

of 3238 million metric tons (Mt) (http://faostat.fao.org/site/340/default.aspx,

February 2006); of which cereals contribute 68.6%, roots and tubers 22.0%,

legumes 1.9%, oilseeds 4.2%, and plantain and banana 3.3%. Asia is the

largest contributor to cereal production (45.9%) followed by North and

Central America (21.0%) and Europe (20.5%), while Africa and South

America each contributes about 5%. North and Central America (37.3%)

and South America (34.9%) dominate legume production, while Asia con-

tributes only 18.2%. Both Africa and Europe contribute about 3% of legume

production. For oilseeds, Asia is the largest producer (48.8%) followed by

Europe (21.3%), Africa (16.0%), and North and Central America (9.0%),

while South America contributes 3.3%. Asia, Africa, and Europe together

contribute about 88% to the world production of root and tuber crops, while

Africa predominates in plantain and banana production (71.8%) followed by

South America (18.1%) and North and Central America (6.9%). Significant

trends in production during the period from 1961 to 2005 were noted

(Table I). For example, maize has overtaken both wheat and rice; soybean

maintains its predominant position among legume crops, although peanut

(groundnut) production doubled while beans production slowly but steadily

increased by 58%; and substantial increases in cassava and banana produc-

tion were noted. In contrast, worldwide oat production declined substantial-

ly. Millet production remained stagnated, while sorghum production

declined by 21% since its peak production in the first half of the 1980s.

Across regions, wide variation exists in productivity of these crop commodi-

ty groups: cereals from 1.24 t ha�1 in Africa to 5.40 t ha�1 in North and

Central America; legumes from 0.55 t ha�1 in Africa to 2.60 t ha�1 in North

and Central America; oilseeds from 0.78 t ha�1 in Africa to 1.76 t ha�1 in

Europe; root and tuber crops from 8.23 t ha�1 in Africa to 24.52 t ha�1 in

North and Central America; and plantain and banana from 5.61 t ha�1

in Africa to 10.05 t ha�1 in North and Central America. Many factors

have contributed to increased productivity of these food crops: the develop-

ment of higher yielding cultivars, increased application of fertilizers, herbi-

cides for weed control, insecticides and fungicides for the control of pests,

and increases in irrigation.

Average increases in productivity vary considerably between crops: for

example, maize (except for the period from 1986 to 1990), rice, and wheat

productivity has increased steadily throughout the last 45 (1961–2005) years

(Table II). In contrast, there were only marginal increases in barley and oat

http://faostat.fao.org/site/340/default.aspx


Table I

World‐Wide Average Production of the Major Cereal, Legume, Root and Tuber, and Banana and Plantain Cropsa

Crop

Average production (million Mt) (1961–2005)

1961–1965 1966–1970 1971–1975 1976–1980 1981–1985 1986–1990 1991–1995 1996–2000 2001–2005

Banana and plantain

Banana 23.3 28.8 31.8 34.6 38.0 44.3 52.8 61.2 70.1

Plantain 14.0 17.3 21.5 23.3 23.1 25.3 27.9 29.8 32.3

Cereal

Barley 111.8 110.9 139.1 161.9 162.5 171.5 161.5 141.8 143.0

Maize 214.3 261.8 317.7 386.6 435.7 458.9 518.2 597.9 650.8

Millet 2.5 2.9 2.8 2.6 2.8 2.8 2.7 2.8 2.8

Oat 46.8 50.5 49.3 45.5 44.9 40.0 33.3 28.1 26.1

Rice 241.3 287.9 329.8 374.9 442.6 489.8 532.4 587.2 595.7

Sorghum 4.5 5.5 6.1 6.4 7.0 6.3 6.0 6.2 5.8

Wheat 247.7 308.9 354.9 421.8 485.6 532.9 549.2 593.0 594.5

Legume

Beans 11.8 12.0 12.7 12.9 15.0 15.6 16.2 16.6 18.7

Broad bean 5.5 4.4 4.3 4.3 4.2 4.3 3.3 3.6 4.3

Chickpea 7.0 6.3 6.2 6.8 6.4 6.9 7.6 8.5 8.0

Cowpea 1.0 1.1 1.1 1.1 1.1 1.6 2.3 3.2 3.7

Lentil 0.9 1.0 1.1 1.3 1.7 2.5 2.4 2.9 3.4

Pea 10.7 9.0 8.9 9.2 10.5 14.8 13.3 11.4 10.9

Peanut 15.5 16.8 18.1 17.6 19.8 23.1 26.5 32.4 35.4

Pigeon pea 1.8 1.8 2.0 2.1 2.5 2.7 2.7 2.9 3.1

Soybean 28.6 40.3 53.8 75.3 90.4 100.7 119.3 150.8 192.6

Root and tuber

Cassava 78.3 92.1 103.3 119.9 130.5 144.3 162.4 166.6 193.3

Potato 269.8 291.7 282.4 276.4 273.9 275.4 278.4 308.9 319.5

Sweet potato 100.6 123.8 136.0 140.8 129.8 124.5 128.0 136.7 131.4

Yam 9.4 14.4 13.5 12.0 11.8 15.9 30.6 35.9 39.2

a(http://faostat.fao.org/faostat/collections?version¼ext&hasbulk¼0&subset¼agriculture).
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Table II

World‐Wide Average Productivity of the Major Cereal, Legume, Root and Tuber, and Banana and Plantain Cropsa

Crop

Average production (t ha�1) (1961–2005)

1961–1965 1966–1970 1971–1975 1976–1980 1981–1985 1986–1990 1991–1995 1996–2000 2001–2005

Banana and plantain

Banana 10.81 11.33 11.49 12.68 13.08 13.34 14.16 15.36 15.74

Plantain 5.42 5.98 6.26 5.91 5.67 5.93 5.97 6.23 6.27

Cereal

Barley 1.48 1.75 1.87 2.00 2.05 2.26 2.21 2.41 2.54

Maize 2.01 2.34 2.69 3.10 3.46 3.50 3.82 4.29 4.56

Millet 0.58 0.66 0.66 0.68 0.76 0.76 0.73 0.77 0.80

Oat 1.45 1.67 1.67 1.70 1.76 1.79 1.75 1.98 2.13

Rice 1.99 2.22 2.41 2.63 3.08 3.36 3.61 3.84 3.93

Sorghum 0.96 1.10 1.27 1.38 1.50 1.39 1.36 1.41 1.33

Wheat 1.18 1.42 1.62 1.82 2.08 2.37 2.50 2.69 2.78

Legume

Beans 0.49 0.51 0.54 0.54 0.59 0.60 0.65 0.66 0.71

Broad bean 1.04 0.93 1.05 1.14 1.25 1.42 1.47 1.53 1.61

Chickpea 0.59 0.61 0.62 0.65 0.66 0.70 0.72 0.76 0.78

Cowpea 0.31 0.21 0.25 0.34 0.32 0.35 0.34 0.36 0.38

Lentil 0.56 0.59 0.60 0.60 0.68 0.77 0.81 0.82 0.88

Pea 0.99 1.09 1.10 1.24 1.25 1.57 1.76 1.82 1.67

Peanut 0.85 0.87 0.90 0.95 1.06 1.17 1.24 1.40 1.42

Pigeon pea 0.65 0.63 0.68 0.70 0.73 0.74 0.67 0.70 0.70

Soybean 1.16 1.42 1.53 1.65 1.75 1.83 2.01 2.18 2.28

Root and tuber

Cassava 7.68 8.22 8.34 9.00 9.41 9.85 9.81 10.13 10.83

Potato 12.34 13.82 14.03 14.51 14.70 15.35 15.37 16.12 16.81

Sweet potato 7.94 10.62 11.35 11.94 13.53 13.70 14.03 14.85 14.51

Yam 7.50 8.39 7.97 8.58 6.56 8.25 10.21 9.82 9.14

a(http://faostat.fao.org/faostat/collections?version¼ext&hasbulk¼0&subset¼agriculture).
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productivity during the same period, while millet productivity has stagnated

and average sorghum productivity declined. For the legumes, cowpea

remained the lowest yielder, while lentil, chickpea, pigeon pea, and beans

productivity remained stagnated for most part but broad bean yields steadily

increased. In contrast, peanut productivity increased by 67%, while soybean

yields consistently increased and remained the top yielder among the legumes.

Three distinct patterns have emerged in the productivity of root and tuber

and plantain and banana: plantain yield remained stagnant while cassava and

yam yield moderately increased. In contrast, substantial increases in produc-

tivity were observed for potato, sweet potato, and banana, with potato being

the highest yielder among these vegetatively propagated crops.

Both abiotic and biotic constraints limit the productivity of all food crops:

for example, drought, salinity, temperature (both extreme high and low),

phosphorous limitation, and aluminum toxicity in acidic soils among the

abiotic stresses, and insect pests and fungal, bacterial, and virus diseases

among the biotic stresses are the major constraints to sustainable production

of these crops. The biotic constraints of greatest eVect worldwide include

bacterial blight (BB) and blast and several virus diseases in rice; rust in wheat,

barley, soybean, and common bean; powdery mildew and Fusarium head

blight (FHB) in wheat and barley; Barley mild mosaic virus (BaMMV)

complex, Barley yellow dwarf virus (BYDV), and Russian wheat aphid in

barley; stem borer in rice, corn, and sorghum; Maize streak virus in corn;

downy mildew in corn, pearl millet, and sorghum; nematodes in soybean;

rust and leaf spots in groundnut; common bacterial blight (CBB) and several

virus diseases in common bean; anthracnose in common bean, cassava, and

yam;Ascochyta blight in pea and chickpea;Cassava mosaic virus andCassava

brown streak virus in cassava; Yam mosaic virus (YMV) in yam; late blight

and several virus diseases in potato; and Black Sigatoka in banana and

plantain. Additionally, parasitic weeds, for example Striga, Electra, and

Orobanche, seriously limit the production of cereal and legume crops in

Africa and Asia. There are many documented cases where these constraints

alone or in combination have caused havoc to production and famine in

many parts of the world. Some fungal diseases of crop plants also produce

mycotoxins that are detrimental to human and animal health. For example,

aflatoxin (caused by Aspergillus flavus) in corn and peanut, and deoxyniva-

lenol (DON) (caused by FHB) in wheat and barley pose serious risk to the

safety of human food and livestock feed.

Conventional breeding is undoubtedly responsible for substantial gains in

the productivity of the many food crops, for example, the introduction of

dwarfing genes (Sd1 in Dee Geo Woo Gen rice and Rht1 and Rht2 in Norin

10wheat) and hybridmaize tolerant to high crop density adapted these crops to

intensive agriculture worldwide in what is collectively known as the Green
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Revolution. The Green Revolution helped many developing countries to pro-

duce the needed food for their growing population. However, environmental-

ists, economists, and social scientists criticized this technology for what they

assessed as its shortcomings (e.g., use of fertilizers and pesticides as well as

monoculture of a few crop cultivars), or who benefited (Swaminathan, 2006).

Additionally, only limited progress has been achieved through conventional

breeding to address the production constraints with genetically more complex

traits such as tolerance to drought and salinity, resistance to pathotypes (in the

case of diseases) and biotypes (in the case of pests) with complex inheritance,

low heritability, and high genotype‐by‐environment interaction (GEI).

From 5.66 billion in 1995, the world population will reach 7.5 billion in

2020, with developing and developed countries’ share accounting for 97.5%

and 2.5%, respectively (Pinstrup‐Anderson et al., 1999). The global demand

for cereals during the same period will increase by 39% to 2466 Mt; meat by

58% to 313 Mt; and root and tuber crops by 37% to 864 Mt. The large

increases in food demand will result not only from population growth but

also from urbanization, income growth, and changes in lifestyles and food

preferences. The developing countries will account for about 85% of the

increase in global demand for cereal and meat. A demand‐driven ‘‘livestock

revolution’’ is under way in the developing world and the demand for meat in

the developing world is projected to double between 1995 and 2020

(Pinstrup‐Anderson et al., 1999). In response to the strong demand for

meat products, demands for cereals for feeding livestock will double in

developing countries. Demand for maize in developing countries will increase

much faster than for any other cereal and will overtake demand for rice and

wheat by 2020. To meet this demand, the world’s farmers will have to

produce 40% more grain in 2020. Increases in cultivated area are expected

to contribute only about one‐fifth of the increase in global cereal production

between 1995 and 2020, so substantial improvements in crop yields will be

required to bring about the necessary production increases. This will need

to be achieved through a combination of genetic improvements in cultivar

and improved agronomic practices. However, without substantial and sus-

tained additional investment in agricultural research and delivery mecha-

nism, it will become more and more diYcult to maintain, let alone increase,

yields of these crops in the longer term. As gains from conventional breeding

are gradually exhausted, further yield growth will be generated as conven-

tional breeding is combined with wide‐crossing, genomics, and transgenic

technologies to tailor crop cultivars with multiple resistance to biotic and

abiotic stresses and adapted to diverse agroecological niches (Rosegrant

et al., 1995).

Crop biomasses are potential raw materials for the production of agricul-

tural biofuels (ethanol from sucrose or starch derived from vegetative
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biomass or grains) or bio‐diesel (from vegetable oils and animal fat). Pre-

liminary work has already demonstrated that a great potential exists to

develop cellulose‐based bioenergy systems. This could lead to more demand

for cereals (in terms of biomass and grains) for biofuel and oilseeds for bio‐
diesel production that will compete with the demand of these crop com-

modity groups for food and feed purposes. Multipurpose crops combining

food, feed, fiber, and biofuel traits are therefore needed to respond to these

market changes (IFPRI 2020 vision for food, agriculture, and the

environment).

Since the development of DNA marker technology in the 1980s, it has

undergone tremendous advances in terms of marker development, genetic

maps, functional and comparative genomic linkages, utilization of genome

sequencing, and scale and cost of application technologies. As new develop-

ments unfold, the power of genomics to facilitate a more genetic‐led
approach to plant breeding will be one of the most important advances

enabling crop improvement to solve some of the world’s most diYcult

problems regarding sustainable agricultural production in many parts of

the world. Molecular markers can now be routinely applied to assess and

enhance diversity in germplasm collections, to identify genes that control key

traits, and to introgress valuable traits from new sources. The ability to

introgress beneficial genes under the control of specific promoters through

transgenic approaches is anothermilestone on the path to targeted approaches

to crop improvement for which genomic sciences have already identified a

vast array of genes that have exciting potential for crop improvement

(Delmer, 2005).

There are several generic reviews on plant genomics with respect to genetic

mapping, quantitative trait loci (QTL) analysis, molecular breeding, and mod-

eling genetic variability of plant responses to environmental stresses (Ası́ns,

2002; Dekkers and Hospital, 2002; Dwivedi et al., 2005; Guo, 2000; Mohan

et al., 1997; Stuber et al., 1999; Tardieu, 2003; Varshney et al., 2005a). Similarly,

there are a number of crop‐specific reviews on applied genomics, including rice

(Ashikari and Matsuoka, 2002; Mackill and McNally, 2004; Xu, 2003), wheat

(Koebner et al., 2001), barley (Koebner et al., 2001; Thomas, 2003), common

bean (Broughton et al., 2003; Miklas et al., 2006a), cowpea (Ortiz, 2003),

peanut (Dwivedi et al., 2003), plantain and banana (Crouch et al., 1998b),

yam (Mignouna et al., 2003a), and potato (Barone, 2004). However, in this

chapter, we focus on how progress in plant genomics has oVered new oppor-

tunities for plant breeders and the extent to which these have been successfully

applied in real breeding programs. We then go on to review the essential allied

technologies that will be required for successful molecular breeding programs

and synthesize the problems and prospects for a future technology‐assisted
crop improvement paradigm.
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II. DEVELOPMENT OF MARKERS FOR
ASSISTING SELECTION
A. GENETIC RESOURCES

Plant genetic resources (PGR) are the basic raw materials required to

power current and future progress in crop improvement programs. The use

of PGR in crop improvement is one of the most sustainable ways to conserve

valuable genetic resources for the future, and simultaneously to increase

agricultural production and food security. Key to successful crop improve-

ment is a continued supply of genetic diversity including new or improved

variability for target traits. The centers of the Consultative Group on Inter-

national Agricultural Research (CGIAR) have the responsibility to collect,

preserve, characterize, evaluate, and document the genetic resources of the

cultivated and wild relatives of the cereals (barley, maize, millets, oat, rice,

sorghum, and wheat), legumes (Bambara groundnuts, chickpea, common

bean, cowpea, faba bean, grasspea, lentil, pea, peanut, pigeon pea, and

soybean), roots and tubers (Andean root and tuber crops, cassava, potato,

sweet potato, and yam), andMusa (both banana and plantain). Additionally,

they have genetic improvement programs that integrate these genetic

resources into elite breeding material for use in national cultivar development

programs. These germplasm collections are under the aegis of FAO held in

trust, and available to researchers globally for diverse use. Collectively, the

CGIAR centers possess about 600,000 samples from about 370,000

cultivated accessions, 34,000 wild and weedy accessions, and nearly 177,000

accessions from an uncertain (unknown) category (Table III). The largest

representation is of the cereals (64.65%) followed by legumes (30.28%), roots

and tubers (4.82%), and Musa (0.25%). The CGIAR System‐wide Informa-

tion Network for Genetic Resources (SINGER) links the genetic resources

information systems of individual CGIAR centers around the world, allow-

ing them to be accessed and searched collectively. SINGER contains key

data of more than half a million individual accessions of crops, forage, and

agroforestry genetic resources held in the center genebanks (http://www.

singer.cgiar.org/). The remaining germplasm are stored in other internation-

al, regional, and national genebanks, many of which collaborate closely with

CGIAR centers.

Crop germplasm collections held in genebanks are the best genetic resour-

ces for detailed characterization of important traits such as tolerance to biotic

and abiotic stresses, yield, nutrition, and grain quality. These existing diverse

germplasm collections are ‘‘gold mines’’ for analysis of allelic diversity. The

eYciency of crop improvement programs, whether conventional breeding

alone or powered with marker‐assisted selection (MAS), depends on the

http://www.singer.cgiar.org/
http://www.singer.cgiar.org/


Table III

Wild and Cultivated Accessions of the Andean Root and Tubers, Banana, Barley, Bean, Cassava,

Chickpea, Faba Bean, Grasspea, Lentil, Maize, Minor Millets, Musa, Oat, Pea, Peanut, Pearl

millet, Pigeon pea, Potato, Rice, Sorghum, Soybean, Sweet potato, Wheat, and Yam Preserved in

CGIAR Gene Banks

Crop

No. of accessions stored in CGIAR’s gene bank

Cultivated Wild and weedy Unknown Total

Andean root and tuber crops 1042 58 1100

Bananaa 979 178 283 1440

Barley 17,759 79 6382 24,220

Barley (wild Hordeum) 15 1817 1832

Barnyard millet 743 743

Cassava 3009 7137 679 10,825

Chickpea 30,748 419 31,167

Common bean 31,263 2272 33,535

Cowpea 11,268 1779 14,494 27,541

Faba bean BPL 5285 5285

Faba bean 2952 3025 6602 12,579

Finger millet 5844 105 5949

Foxtail millet 1481 54 1535

Grasspea 379 1116 1815 3310

Kodo millet 658 658

Lablab bean 42 42

Lentil 2646 498 6825 9969

Lima bean 40 40

Little millet 466 466

Maize 21,993 177 22,170

Mung bean 122 122

Oat 679 16 695

Pea 1658 176 4271 6105

Peanut 14,966 453 15,419

Pearl millet 20,844 750 21,594

Pigeon pea 13,077 555 13,632

Potato 4579 2108 6688

Proso millet 842 842

Rice (indica and japonica) 49,644 644 67047 11,7335

Rice (wild) 33 3789 4020 7842

Sorghum 36,975 418 37,393

Soybean 193 16985 17,178

Sweet potato 4717 1403 6120

Wheat (bread and durum) 85,152 1 41,469 126,622

Wheat (primitive) 525 5 84 614

Wheat (Triticum and Aegilops) 29 5126 12 5167

Yam 2897 17 362 3276

Total 370,055 34,175 176,819 581,050

aAlso contains accessions from INIBAP.

(http://singer.grinfo.net/).
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accuracy and precisions of evaluation techniques used to generate appropriate

phenotyping data. However, the size of most crop‐related global germplasm

collections is simply too vast for systematic evaluation in replicated multiloca-

tional trials. Moreover, the diversity of adaptation and major phonological

traits of such material highly confounds attempts to generate directly compa-

rable agronomic performance data. Undoubtedly, the robustness of phenotyp-

ing is the single most important constraint for eVective selection of appropriate

new genetic resources, particularly for abiotic stress tolerance and yield poten-

tial. Genomic analysis will have a major role to play in helping to identify

subsets of germplasm that are small enough to allow precision phenotyping of

replicated multilocational trials for groups of accessions with suYcient homo-

geneity of phenological and adaptation backgrounds, yet maximum diversity

for the target trait: genetically structured trait‐based core collections.
The development of core collections has been shown to be a particularly

powerful strategy for providing crop breeding programs with a systematic yet

manageable entry point into global germplasm resources. Core collections

are a cost‐eVective means of identifying accessions with desirable agronomic

traits as well new sources of disease and pest resistance or abiotic stress

tolerance. Core collections are usually constituted from the 10% of the entire

germplasm collection that represents at least 70% of the collections variability

in that collection (Brown, 1989). These representative accessions in these core

collections are identified based on all available information, including passport

data plus botanical and agronomical descriptors. In this way, the development

of a core collection has the advantage of displaying much of the phenotypic

variability conserved in the genebank in a limited number of accessions. This

allows researchers to identify trait‐based hot spots, for example, for new

sources of resistance to new isolates or biotypes of diseases and pests at a

substantially lower cost than systematically evaluating the entire collection.

However, this approach can only be as good as the phenotypic data onwhich it

is based, and thus may not be a more eVective route for identifying the best

genetic variability for new traits. In this case, it is hoped that a new generation

of core collections based on combined phenotypic and genotyping analysismay

be more eVective. Conventional core collections are available in barley, cas-

sava, cowpea, finger millet, maize, Musa, pearl millet, potato, quinova, rice,

sorghum, sweet potato, West African yam, and wheat (Table IV), and for

several legumes crops (Dwivedi et al., 2005 and reference therein). However, in

crops, such as rice, wheat, and maize, or even in legumes, such as chickpea,

peanut, and cowpea with large number of accessions stored in the genebank,

even a core collection could be unmanageably large so a further reduction is

warranted provided it is not associatedwith losing toomuch of the spectrum of

diversity. Thus,Upadhyaya andOrtiz (2001) developed a two‐stage strategy for
developing a mini‐core collection, again based on selecting 10% of the acces-

sions from the core collection representing 90% of the variability of the entire



Table IV

Description of Core Collection in Banana, Barley, Cassava, Cowpea, Finger Millet, Maize, Pearl

Millet, Potato, Rice, Sorghum, Sweet potato, West African Yam, and Wheat

Crop Description

No. of

accessions References

Banana West African plantain core

collection

25 Swennen and Vuylsteke,

1987

Barley East Asian barley core collection 380 Liu et al., 1999

European barley core collection 79 Liu et al., 2000a

USDA‐ARS barley core collection 2303 Bowman et al., 2001

American barley core collection 151 Liu et al., 2001a

Core collection 670 Fu et al., 2005

Carib bean maize Core collection 100 Taba et al., 1998

Cassava Core collection 630 Chavarriaga‐Aguirre

et al., 1999

Cowpea Core collection 2062 Mahalakshmi et al., 2007a

Finger millet Core collection 622 Upadhyaya et al., 2006b

Maize Chinese maize core collection 1193 Li et al., 2004b

Pearl millet Core collection 1600 http://icrtest:8080/

Pearlmillet/Pearlmillet/

coreMillet.html

Potato Core collection 306 Huamán et al., 2000

Rice USDA core collection 1801 Yan et al., 2004b

IRRI core collection 11,200 Mackill and McNally, 2004

Sorghum Core collection 3475 Rao and Rao, 1995

Core collection 210 Deu et al., 2006

Sweet potato Core collection 85 Huamán et al., 1999

Uruguayan

maize

Core collection 720 Malosetti and Abadie, 2001

West African

yam

Core collection 391 Mahalakshmi et al., 2007b

Wheat Novi Sad Core collection 710 Kobiljski et al., 2002

Chinese common wheat core

collection

340 Dong et al., 2003
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collection. In this process, first a representative core collection is developed

using all the available information on geographic origin, characterization, and

evaluation data. In the second stage, the core collection is evaluated for various

morphological, agronomic, and quality traits to select a subset of 10% acces-

sions from this core subset (or 1% of the entire collection) that captures a large

proportion (i.e., more than 80% of the entire collection) of the useful variation.

At both stages in selection of core andmini‐core collections, standard clustering
procedures are used to separate groups of similar accessions combined with

various statistical tests to identify the best representatives.Mini‐core collections
are reported for crops such as chickpea (Upadhyaya and Ortiz, 2001), peanut

(Upadhyaya et al., 2002), pigeon pea (Upadhyaya et al., 2006c), and rice (1536

accessions, D. J. Mackill, IRRI, personal communication). Evaluation of core

and mini‐core collections has been suggested as the most eYcient and reliable

http://icrtest:8080/Pearlmillet/Pearlmillet/coreMillet.html
http://icrtest:8080/Pearlmillet/Pearlmillet/coreMillet.html
http://icrtest:8080/Pearlmillet/Pearlmillet/coreMillet.html
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means of carrying out an initial search of germplasm collections for desirable

traits. Such eVorts have led to the identification of diverse germplasm with

beneficial traits in barley (Bowman et al., 2001), quinoa (Ortiz et al., 1999), and

many legume crops of significant economic values (see Dwivedi et al., 2005 and

references therein; Brick et al., 2006). It is appropriate to emphasize that the

core or mini‐core collections do not replace the need for evaluating large parts

of the entire collection but simply oVer a means of stratifying the process into

moremanageable batch sizes that can be evaluatedmore eVectively. There is no
doubt that this approach may still miss some useful alleles that are present at a

very low frequency. In this case, for well‐studied traits it may be possible to use

genomics technologies to pursue allele mining and gene discovery approaches

(Latha et al., 2004; Maccaferri et al., 2005).

The genomic revolution, including dramatic advances in molecular biolo-

gy, bioinformatics, and information technology, provides the scientific com-

munity with tremendous opportunities for improving the pace and scale of

plant breeding progress and thereby helping to solve some of the world’s

most serious agricultural and food security issues. For example, molecular

markers can be used for (1) diVerentiating cultivars and constructing heter-

otic groups; (2) identifying germplasm redundancy, underrepresented alleles,

and genetic gaps in current collections; (3) monitoring genetic shifts that

occur during germplasm storage, regeneration, domestication, and breeding;

(4) screening germplasm for novel genes or superior alleles; and (5) con-

structing a representative subset or core collection (Xu et al., 2003). This

realization led to the formation of the Generation Challenged Program

(GCP) (www.generationcp.org). The GCP aims to utilize molecular tools

and comparative biology to explore and exploit genetic diversity housed

in existing germplasm collections, with a particular focus on improving

the drought tolerance of various cereals, legumes, and clonal food crops.

A primary goal of the GCP is extensive genomic characterization of global

crop‐related genetic resources (composite collections), initially using simple

sequence repeat (SSR) markers to determine population structure and now

moving onto whole‐genome scans [including single nucleotide polymorphism

(SNP) arrays and diversity arrays technology (DArT)] and functional geno-

mic analysis of subsets of germplasm (mini‐composite collections). Thus, the

GCP has created composite collections to cover global diversity for most of

the 20 CGIAR‐mandated crops. These consists of 3000 accessions or no

more than 10% of the total number of available accessions for inbreeding

crops and 1500 accessions for outbreeding species (where each accession

must be treated as a population). It is expected that this analysis will also

lead to the development of genetically broad‐based mapping and breeding

populations. The results from these GCP‐supported projects are already

starting to flow for the benefit of the scientific community. For example,

a global composite collection of 3000 accessions has been developed in

chickpea (Upadhyaya et al., 2006a), its genetic structure defined using

http://www.generationcp.org
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50 polymorphic microsatellites, and a reference collection of 300 accessions

identified (ICRISAT/ICARDA unpublished). Further, GCP is supporting

a project on allele diversity at orthologous candidate (ADOC) genes that

will produce and deliver a public dataset of allelic diversity at orthologous

candidate genes across eight important GCP crops and assess whole sequence

polymorphism in a DNA bank of 300 reference accessions for each crop. This

reference germplasm, which has already undergone genome scan, will be

evaluated for traits associated with drought tolerance to test for association

between observed polymorphism and trait variability (http://www.intl‐pag.
org/14/abstracts/PAG14_W264.html). The mini‐composite collections and

the associated marker technologies developed under GCP will be freely

available to all those interested in using these genetic and genomic resources.

Eshed and Zamir (1994) proposed to exploit introgression lines (ILs), also

known as chromosome segment substitution lines (CSSLs) or contig lines

(CLs), which could be generated by systematic backcrossing and introgres-

sion of marker‐defined exotic segments in elite genetic background. ILs have

a high percentage of the recurrent parent genome and a low percentage of the

donor parent genome. ILs oVer several advantages over conventional popu-
lations: first, they provide useful stocks for highly eYcient QTL or gene

identification and fine‐mapping of these; second, they can contribute to the

detection of epistatic interactions between QTL; and third, they can be used

to map new region‐specific DNA markers (Eshed and Zamir, 1995; Fridman

et al., 2004). Several sets of ILs are now available in barley, maize, rice,

soybean, and wheat (Table V) that contain beneficial alleles from wild rela-

tives, thus enriching the genetic diversity in primary gene pools of these

crops. These ILs when crossed produce progenies with enhanced trait values

as demonstrated for increased yield in tomato and wheat (Gur and Zamir,

2004; Shubing et al., 2006). Other useful genetic resources being developed in

many crops include recombinant inbred lines (RILs) (Burr et al., 1988),

advanced backcross lines (Tanksley and Nelson, 1996), near isogenic lines

(NILs) (Muehlbauer et al., 1988), and double‐haploid lines (DHL) (Kasha

andKao, 1970) that can be used to identify genes underlying traits bymarker‐
phenotype correlations, dissecting the genetic structure of the complex

traits, and for enhancing the trait performance.

In addition to naturally available and conventionally bred genetic

resources preserved in genebanks, researchers are also creating new genetic

variation by using novel technique such as Targeting Induced Local Lesions

IN Genome (TILLING), which is a powerful reverse genetics technique that

employs a mismatch‐specific endonuclease to detect single base pair (bp)

allelic variation in a target gene using high‐throughput assay. Its advantages
over other reverse genetic techniques include its applicability to virtually any

organism, its facility for high throughput, and its independence of genome

size, reproductive system, or generation time (Gilchrist and Haughn, 2005).

http://www.intl-pag.org/14/abstracts/PAG14_W264.html
http://www.intl-pag.org/14/abstracts/PAG14_W264.html


Table V

ILs (also known as Chromosome Substitution Lines, CSSLs) in Barley, Maize, Rice, Soybean, and Wheat

Description of genetic resources References

Barley (H. vulgare)

146 recombinant chromosome substitution lines, derived from BC2F6 of the cross Harrington and Caesarea (H. vulgare ssp. spontaneum),

covering average H. spontaneum genome of 12.5%

Matus et al., 2003

Two sets of ILs, containing 49 and 43 ILs, derived from BC2DH populations of H. vulgare ssp. spontaneum (ISR42‐8) crossed with

German spring barley cultivar Scarlett and Thuringia, covering at least 98.1% and 93.0% of the exotic genome in overlapping

introgressions and containing on average 1.5–2.0% additional nontarget introgressions

von KorV et al., 2004

Maize (Zea mays)

Maize chromosome disomic (2n ¼ 6x þ 2 ¼ 44) addition lines for chromosomes 1–4, 6, 7, and 9 and monosomic (2n ¼ 6x þ 1 ¼ 43)

addition line for chromosome 8; and for monosomic (n ¼ 3x þ 1 ¼ 23) addition lines for maize chromosome 5 and 10 to a haploid

complement of oat isolated from oat � maize cross

Kynast et al., 2001

Rice (O. sativa)

147 ILs from O. sativa (Taichung 65) and O. glumaepatula reciprocal crosses containing O. glumaepatula or Taichung 65 cytoplasm but

with entire chromosome segments of O. glumaepatula developed

Sobrizal et al., 1999

140 near isogenic ILs derived from a cross between japonica cultivar Nipponbare, and an elite indica line Zhenshan 97B Mu et al., 2004

75 CSSLs, representing on average 97.6% background genome, carrying overlapping chromosome segments of Pai6S in a genetic

background of elite cultivar 9311

Xiao et al., 2005

20,000 ILs in three elite genetic backgrounds (IR64, Teqing, and IR68552‐55‐3‐2) containing a significant portion of loci aVecting

complex phenotypes at which allelic diversity exists in the primary gene pool of rice

Li et al. , 2005 a

25 monosomic alien addition lines (MAALs) containing the complete genome of O. sativa and individual chromosomes of O. oYcinalis Tan et al., 2005

159 ILs carrying variant introgressed segments fromO. rufipogonGriV. in the background of indica cultivar, Guichao representing 67.5%

of the O. rufipogon genome and recurrent parent genome ranging from 92.4% to 99.9%, with an average of 97.4%. The average

proportion of donor genome was about 2.2%

Tian et al., 2006b

Soybean (G. max)

22 monosomic addition lines, containing an extra chromosome from G. tomentella to the 2n soybean complement, possess several

modified plant characteristics such as flowering habit, plant height, degree of pubescence, seed fertility, number of seeds per pod and

plant, pod and seed color, and seed yield

Singh et al., 1998

Wheat (T. aestivum)

36 homozygous lines carrying diVerent segments of individual chromosomes of Aegilops tauschii genome Pestsova et al., 2001

84 ILs containing a single homozygous introgression from A. tauschii genome in ‘‘Chinese Spring’’ background Pestsova et al., 2006
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As TILLING provides mutation in the target gene, it oVers much greater

prevision than previous random mutation techniques (using chemical or

radioactive mutagens), and it has been successfully used for the detection

of both induced and natural variation in several plant and animal species

( Perry et al. , 2003; Smit s et al. , 2004; Stempl e, 2004; Till et al. , 2003, 2004 ;

Wienholds et al., 2003). For example, Slade et al. (2005) generated 246 alleles

in the granule‐bound starch synthase 1 (GBSS1) gene (waxy) in wheat using

TILLING. Reduction or loss of GBSS1 function results in starch with a

decreased or absent amylase fraction, desired for its improved freeze‐thaw
stability and resistance to staling compared to conventional starch. Similarly

in maize, Till et al. (2003, 2004) screened pools of DNA samples for muta-

tions in 1‐kb segments from 11 diVerent genes, obtained 17 independently

induced mutations from a population of 750 pollen‐mutagenized maize

plants, and established the public TILLING service for maize modeled on

Arabidopsis TILLING project (Till et al., 2003) at Purdue University (http://

genome.purdue.edu/maizetilling). More recently, an EcoTILLING facility

has been established at IRRI to identify putative SNPs in both cultivated and

wild rice germplasm. EcoTILLING a set of 900 of the Oryza sativa lines for

1800 bp of coding and regulatory region of ERF3 (a candidate gene asso-

ciated with drought tolerance) identified 31 SNP and short indels that

grouped into 9 haplotypes corresponding to the cultivar types (McNally

et al., 2006).

Powdery mildew is the devastating disease of barley. The genes mlo and

Mla are involved in the host plant resistance of barley against the fungal

pathogen causing powdery mildew.Mla has multiple alleles at its locus, while

mlo is a single copy gene. Using EcoTILLING approach, Mejlhede et al.

(2006) not only detected point mutations and deletions in each of the 11 mlo

mutants tested but also identified most of the Mla alleles from 25 natural

variants ofHordeum vulgare ssp. spontaneum, although the identification was

complex due to the presence of highly similar paralogues of Mla.

Among the legumes, TILLING is being used to develop soybeans

with better seeds (improved oil and protein content and allergen‐free
soybeans) (http://www.ars.usda.gov/is/pr/2005/050705.htm). TILLING has

great potential to detect both induced and natural polymorphic variation,

and asmoreDNAmarkers become available and the technological innovations

advanced thus reducing the cost of high‐throughput analysis, this technique has
great potential for application in crop improvement. These structured mutant

populations are also a valuable resource for forward genetic screens.

Natural biodiversity is an underexploited sustainable resource that can

enrich the genetic basis of cultivated plants with novel alleles and genes to

improve yield potential and stability adaptation and resilience. Wild relatives

possess a high level of resistance to many biotic and abiotic stresses but are

agronomically inferior to modern cultivars (albeit sometimes harboring

masked genes of beneficial value for these traits). Tools developed for genetic

http://genome.purdue.edu/maizetilling
http://genome.purdue.edu/maizetilling
http://www.ars.usda.gov/is/pr/2005/050705.htm
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dissection of traits in cultivated germplasm can also be used to identify and

assist the transfer of useful genes from wild relatives (Tanksley and Nelson,

1996) that has been eVectively used for improving both yield and/or seed

quality in barley, chickpea, common bean, oat, peanut, pearl millet, pigeon

pea, rice, sorghum, soybean, and wheat (Dwivedi et al., 2007).

For many crops, the level of genetic diversity in the primary gene pool is

narrow. Expanding the genetic base of these crops is, therefore, important

for continued crop improvement. Rapid developments in molecular genetic

technologies have opened up the vast majority of plant genomes to investi-

gation that in turn will enable the release of genetic variation not previously

accessible through conventional crossing and selection.
B. GENOMIC RESOURCES

1. Genetic Markers

Genetic markers were originally used in genetic mapping to determine the

order of the genes along chromosomes, and evolved from morphological

markers through isozyme markers to DNA markers which themselves

evolved from hybridization‐based detection to polymerase chain reaction

(PCR) amplification and now to new sequence‐based systems. Both morpho-

logical and isozyme markers are limited in number. Additionally, the mor-

phological markers are aVected by the environment, and a given marker can

aVect other morphological traits because of pleiotropic gene action. Conse-

quently, genome‐wide analysis is not feasible using both morphological and

isozyme markers. DNA markers are typically derived from a small region of

DNA that shows sequence polymorphism between individuals within a

species, and may be classified into random DNA markers (RDM) (also

known as anonymous or neutral markers), gene‐targeted markers (GTM)

(also known as candidate gene marker), and functional markers (FM)

(Andersen and Lübberstedt, 2003). RDM are derived at random from poly-

morphic sites across the genome, whereas GTM are derived from

polymorphisms within the gene. FM are derived from polymorphic sites

within genes causally associated with phenotypic trait variation and are

superior to RDM owing to complete linkage with trait locus alleles

(Andersen and Lübberstedt, 2003). The major draw back of the RDM is

that their predictive value depends on the known linkage phase between

marker and target locus alleles (Lübberstedt et al., 1998). In contrast, once

genetic eVects have been assigned to functional sequence motifs, FM derived

from such motifs can be used for fixation of gene alleles in a number of

genetic backgrounds without additional calibration. FM are superior to

GTM and RDM owing to their association with genes of known function.
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a. Random DNA Markers. Restriction fragment length polymorphisms

(RFLPs) were the first DNA markers to be developed that have been widely

and successfully used to construct linkage maps and detect QTL in many crop

species. However, with the discovery of the polymerase chain reaction (PCR)

(Saiki et al., 1988), attention shifted to developing a wide range of PCR‐based
assays including random amplified polymorphic DNA (RAPD), amplified

fragment length polymorphisms (AFLPs), and SSR (also known as microsa-

tellites). RFLP, although providing high‐quality codominant information, is

labor intensive, time consuming, requires large amount of DNA, and is depen-

dent on radioisotope‐based protocols. While RAPD and AFLP only provide

dominant information; the former suVers from reproducibility problems.How-

ever, it is possible to convert tightly linked RFLP markers into PCR‐based
sequence‐tagged site (STS) markers (Olson et al., 1989) and both RAPD and

AFLP bands can be converted into sequence‐characterized amplified region

(SCAR) markers (Paran and Michelmore, 1993) or cleaved amplified poly-

morphic sequences (CAPs) markers (Konieczny and Ausubel, 1993). Micro-

satellite markers are ideal DNAmarkers for genetic mapping and population

studies because of their abundance, high level of polymorphism, multiallelic

nature, codominant inheritance and wide dispersion in genomes, ease of

assay using PCR, and ease of dissemination among laboratories (Powell

et al., 1996). Barley has the largest collection of SSR markers followed by

rice, wheat, maize, and sorghum (Table VI). Soybean, chickpea, pea, and

peanut also have large well‐assembled collections of SSR (Dwivedi et al.,

2005; Moretzsohn et al., 2005; Sethy et al., 2006). Other legume crops, such

as cowpea and common bean, which are also globally important, are lagging

behind in terms of SSR development, as is the case forMusa and many other

clonal crops (Table VI).

DArT is microarray‐based technique that detects genetic polymorphism,

which can be used to construct medium‐density genetic linkage maps in species

with various genome sizes (Jaccoud et al., 2001). DArT markers are biallelic

and behave in a dominant (present vs absent) or codominant (two doses vs one

dose vs absent) manner. DArT is a good alternative to currently used techni-

ques (such as RFLP, AFLP, SSR, and SNP), in terms of cost and speed of

marker discovery and analysis, for whole‐genome fingerprinting. It is cost‐
eVective, sequence‐independent, nongel‐based technology that is amenable to

high‐throughput automation, discover hundreds of high‐quality markers in a

single assay, and integration of DArT markers in genetic map is straightfor-

ward. An open source software package, DArTsoft, is available for automatic

data extraction and analysis.DArT technology has been successfully developed

for barley, cassava, rice, andwheat, while work is in progress to establishDArT

in chickpea, pigeon pea, and sorghum (http://www.diversityarrays.com/pub/

huttneretal2005.pdf). For example, a genetic map with 385 unique DArT

markers spanning 1137‐cM barley genome (Wenzl et al., 2004) constructed,

DArT markers with AFLP and SSR markers mapped on wheat genome

http://www.diversityarrays.com/pub/huttneretal2005.pdf
http://www.diversityarrays.com/pub/huttneretal2005.pdf


Table VI

SSR Markers Reported in Banana, Barley, Cassava, Maize, Oat, Pearl Millet, Potato, Rice,

Sorghum, Sweet potato, Wheat, and Yam

Summary of the marker information reported References

Banana

24 SSRs from M. acuminata ssp. malaccensis Crouch et al., 1998a

44 B‐genome‐specific SSRs from enriched library of

M. balbisiana cultivar Tani

Buhariwalla et al., 2005a

9 B‐genome‐derived SSRs Oriero et al., 2006

Barley

45 SSRs from genomic DNA library and from public databases Liu et al., 1996

568 SSRs from database sequences and small‐insert genomic

libraries

Ramsay et al., 2000

1856 SSRs from 24,595 ESTs Thiel et al., 2003

127 SSRs from genomic DNA of barley cultivar Franka Li et al., 2003b

3530 SSRs from 170,746 ESTs Nicot et al., 2004

Cassava

14 SSRs containing GA‐repeats from cassava genome Chavarriaga‐Aguirre

et al., 1998

9 SSRs from genomic library of Ipomoea batatas Buteler et al., 1999

172 SSRs from 692 putative DNA clones from cassava Mba et al., 2001

Maize

6 SSRs from sequences Senior and Heun, 1993

200 SSRs from maize sequences Chin et al., 1996

655 indels from 8 maize inbreds Bhattramakki et al., 2002

1051 SSRs from maize microsatellite‐enriched libraries and

microsatellite‐containing sequences from public and

private databases

Sharopova et al., 2002

200 SSRs from maize sequences http://www.maizegdb.org/

ssr.php

Oat

34 SSRs from three oat microsatellite‐enriched libraries Li et al., 2000

Pearl millet

50 SSRs from pearl millet BAC clones Qi et al., 2001

18 SSRs from small‐insert genomic library Budak et al., 2003

44 SSRs from a (CA)n‐enriched small‐insert library Qi et al., 2004

Potato

42 SSRs from potato genomic libraries and SSR‐containing
sequences in the public databases

Ashkenazi et al., 2001

Rice

2414 SSRs representing 2240 unique marker loci, with majority

from regions flanking perfect repeats �24 bp, corresponding

to (GA) (36%), (AT) (15%), and (CCG) (8%) motifs. These

SSRs along with previously mapped 500 SSRs total 2740

SSRs, 1 SSR every 157 kb

McCouch et al., 2002

(continued)
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Table VI (continued )

Summary of the marker information reported References

Sorghum

47 SSRs from sorghum genomic libraries and 2 SSRs from

GenBank SSR‐containing sequences

Brown et al., 1996

10 SSRs from sorghum genomic libraries and 3 SSRs from

database searches

Taramino et al., 1997

313 SSRs from sorghum BAC and genomic‐DNA libraries Bhattramakki et al., 2000

38 SSRs from sorghum genomic DNA libraries Kong et al., 2000

Sweet potato

5 SSRs from size‐fractionated genomic libraries Jarret and Bowen, 1994

112 SSRs from EMBL database, cDNA, and selectively enriched

small‐insert DNA libraries

Milbourne et al., 1998

102 SSRs from small‐insert genomic library,

microsatellite‐enriched library, and mining EST‐databases
Hu et al., 2004a

15 SSRs from Ipomoea trifida sequences, closely related

to sweet potato

Hu et al., 2004b

Wheat

230 SSRs from A, B, and D genomes Röder et al., 1998

22 EST‐SSRs and 20 genomic‐derived SSRs Eujayl et al., 2002

897 EST‐derived SSRs Gupta et al., 2003

540 SSRs from A, B, and D genomes in addition to

570 previously reported SSRs

Song et al., 2005

Yam

20 SSRs identified from Gnidou parent Mignouna et al., 2003b;

Scarcelli et al., 2005
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(Semagn et al., 2006), and a cassava DArT genotyping array containing�1000

polymorphic clones (Xia et al., 2005) are available and display a high level of

polymorphism that shows the genetic relationships among the samples consis-

tent with the information available on them.

b. Gene‐Targeted Markers. Expressed sequence tags (ESTs) are cur-

rently the most widely sequenced nucleotide element from the plant genomes

with respect to the number of sequences and the total number of nucleotides

available to researchers. EST provides a robust sequence resource that can be

exploited for gene discovery, genome annotation, and comparative geno-

mics. ESTs are typically unedited, automatically processed, single‐read
sequences produced from cDNA. Over 38 million sequences have been

deposited in the publicly available plant EST sequence databases (dbEST-

release 090806; http://www.ncbi.nlm.nih.gov/dbEST_summary.html). Many

of these EST have been sequenced as an alternative to complete genome

sequencing or as a substrate for cDNA array‐based expression analysis.

http://www.ncbi.nlm.nih.gov/dbEST_summary.html
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Bioinformatics‐based sequence analysis tools have extended the scope of

EST analysis into the field of proteomics, marker development, and genome

annotation. Although ESTs are no substitute for a whole‐genome scaVold,
this ‘‘poor man’s genome’’ resource forms the core foundations for various

genome‐scale experiments for less well‐funded crops or species with very

large genomes (Rudd, 2003). EST constitutes a novel source of markers

that are physically associated with coding regions of the genome. Moreover,

ESTs are also a source of SSR in many crops. Kumpatla andMukhopadhyay

(2005) used this approach to examine the abundance of SSR in more than

1.54 million EST belonging to 55 dicotyledonous species. The frequency of

EST‐containing SSR among species ranged from 2.65% to 16.82%, with

dinucleotide repeats most abundant followed by tri‐ or mononucleotide

repeats, thus demonstrating the potential of in silico mining of EST for

rapid development of SSR markers for genetic analysis and application in

dicotyledonous crops. However, EST‐SSR (also known as genic SSR) pro-

duce high‐quality markers, but these are often less polymorphic than geno-

mic SSR (Cho et al., 2000; Eujayl et al., 2002; Thiel et al., 2003). SSRmarkers

may also be transferable to related species and are useful for assaying the

functional diversity in natural populations or germplasm collections and also

as anchor markers for comparative mapping and evolutionary studies

(Varshney et al., 2005b). Tang et al. (2006) identified 428 UNI‐SSR‐EST
from wheat genome homologous in rice, maize, and barley. They designed

243 SSR primers and when tested in each species 154 primers produced clear

amplicons across the four species, demonstrating a high eYcient transferabil-

ity of wheat EST‐SSRmarkers to the other cereal crops. Similarly, Choi et al.

(2006) used 274 unigene sequences to develop PCR‐based genetic markers

across 15 legume genomes, representing 6 crops or model legume species

from the phaseoloid and inverted repeat loss clades. They found 129 of these

unigene sequence‐amplified fragments representing single‐copy loci across

most target diploid genomes that 70.5% of these markers are intron spanning

and 85.3% linked to legume genetic maps. EST resources are also being used

to mine SNP (Kota et al., 2003; Picoult‐Newberg et al., 1999). EST provides

a quantitative method to measure specific transcripts within a cDNA library

and represents a powerful tool for gene discovery, gene expression, gene

mapping, and the generation of gene profiles. The National Center for

Biotechnology Information (NCBI) database, dbEST 090806 (http://www.

ncbi.nlm.nih.gov/dbEST_summary.html), contains the largest collection of

EST in rice, wheat, barley, maize, soybean, sorghum, and potato (also see

Table VII). Development of EST in cassava is catching up, while only a few

hundred ESTs are reported in Musa and other clonal crops (Table VII) and

legumes (except for soybean) (Dwivedi et al., 2005; also see Table VII).

Clearly, there is an urgent need to develop SSR in the legumes and clonal

crops.

http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html


Table VII

Expressed Sequenced Tags (ESTs) Reported in Banana, Barley, Cassava, Chickpea, Common

Bean, Maize, Oat, Potato, Rice, Sorghum, Soybean, Sweet Potato, and Wheat

Summary of the ESTs reported References

Banana

2286 ESTs from the leaves of M. acuminata ssp.

burmannicoides variety Calcutta 4

Santos et al., 2005

Barley

13,109 ESTs from 3 cDNA libraries of barley cultivar, Barke,

resulting 4,000 genes

Michalek et al., 2002

271,630 ESTs from 23 barley varieties cDNA libraries

resulting 56,302 tentative consensus sequences

Kota et al., 2003

110,981 ESTs from 22 cDNA libraries resulting 25,224

unique sequences

Zhang et al., 2004

437,321 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Cassava

4000 ESTs from cassava mosaic disease resistant genotype Fregene et al., 2004

23,000 ESTs from various cassava tissues and genotypes

identified 6000–7000 unigenes

Anderson et al., 2004

5700 unigenes from ESTs of root tissues of cassava varieties

with high and low starch contents and those challenged by

cassava BB (Xanthomonas axonopodis pv. manihotis)

Lopez et al., 2004

17,954 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Chickpea

477 ESTs from root tissue of two closely related genotypes

resulted 106 EST‐based markers

Buhariwalla et al., 2005b

Common bean

5255 ESTs from 3 cDNA libraries resulting into

3126 unigenes

Melotto et al., 2005

Maize

73,000 ESTs from multiple organs and developmental stages

resulting 22,000 tentative unique genes

Fernandes et al., 2002

1,143,737 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Oat

9792 EST from oat cDNA library detected 2800 cold‐induced
UniGene sets

Bräutigam et al., 2005

7632 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Potato

61,949 ESTs from aerial tissues, below ground tissues, and

tissues challenged with late blight (Phytophthora infestans)

identified 19,892 unique sequences

Ronning et al., 2003

219,917 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

(continued)
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Table VII (continued )

Summary of the ESTs reported References

Rice

1,188,881 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Sorghum

204,208 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Soybean

27,513 unigenes obtained from a variety of soybean cDNA

libraries made from a wide array of source tissues and

organ systems, developmental stages, and stress or

pathogen‐challenged plants

Vodkin et al., 2004

2003 ESTs from full‐length cDNA library of wild soybean

(50,109) leaf treated with 150‐mM NaCl

Ji et al., 2006

359,158 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Sweet potato

7841 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html

Wheat

855,066 ESTs reported in dbEST release 090806 http://www.ncbi.nlm.nih.gov/

dbEST_summary.html
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Target region amplification polymorphisms (TRAP) are derived from a

rapid and eYcient PCR‐based technique, which uses bioinformatic tools and

EST database information to generate polymorphic markers around targeted

candidate gene sequences (Hu and Vick, 2003). This TRAP technique uses

two primers of 18 nucleotides to generate markers. TRAP are amplified by

one fixed primer designed from a target EST sequence in the database and a

second primer of arbitrary sequence except for AT‐ or GC‐rich cores that

anneal with introns and exons, respectively. The TRAP technique should be

useful in genotyping germplasm collection and in tagging genes with benefi-

cial traits in crop plants. TRAP markers are reported in mapping QTL in

wheat (Liu et al., 2005), mapping disease resistance genes in common bean

(Miklas et al., 2006b), and for nutritional quality of straw or tolerance to

salinity and terminal drought in pearl millet (Mukhopadhyay, Senthilvel,

and Hash, ICRISAT, personal communication).

SNPs are the most abundant sequence variations encountered in most

genomes (Cho et al., 1999; Picoult‐Newberg et al., 1999). Their development

costs are similar to those of SSR, but genotyping platforms are now available

with very high‐throughput potential and very low unit cost (Kanazin et al.,

2002). SNPs are especially useful for association studies because of their high

http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
http://www.ncbi.nlm.nih.gov/dbEST_summary.html
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frequency across the genome and because they are genetically more stable

than SSR. Thus, SNPs are ideally suited for the generation of high‐density
genetic maps (Cho et al., 1999). However, currently there are only a few crops

with large SNP marker resources; rice, maize, barley, and oat having the

largest collection of SNPs (Table VIII). There are also a few hundred SNPs in

soybean and common bean, and very few in peanut (Dwivedi et al., 2006).

For outbreeding crops, such as maize, polymorphic markers are highly

abundant—1 SNP per 60.8 bp (Ching et al., 2002) as compared to inbreeding

species such as rice—3.0 SNP per kb in coding regions to 27.6 SNP per kb in

transposable elements (Yu et al., 2005)—or barley—1 SNP per 200 bp

(Rostoks et al., 2005). More research is needed to fully develop the potential

of this class of marker, but this will surely rapidly occur due to the cost

eYciencies gained during large‐scale genotyping with SNPs.

c. Functional Markers. FM are derived from polymorphic sites within

the genes known to be causally involved in phenotypic trait variation. The

development of FM requires allele‐specific sequences of functionally char-

acterized genes from which polymorphic, functional motifs aVecting plant

phenotype can be identified.
Table VIII

Single Nucleotide Polymorphisms (SNP) Marker Reported in Barley, Cassava, Common Bean,

Maize, Oat, Rice, and Wheat

Summary of the SNPs and indels reported References

Barley

3069 intervarietal and 3377 intravarietal SNP Kota et al., 2003

Cassava

80 intercultivar and 146 intracultivar SNP Lopez et al., 2005

Common bean

318 SNP and 68 indel Melotto et al., 2005

Maize

169 SNP and indel from 36 maize inbreds Ching et al., 2002

14,832 SNP from 102,551 maize EST Batley et al., 2003

Oat

>2000 genome‐wide SNP Rostoks et al., 2005

Two SNP, SNP‐REMAP and SNP‐RAPD, linked with

dwarfing gene, Dw6

Tanhuanpää et al., 2006

Rice

2800 SNP from 3 Oryza ssp. (japonica, indica, and wild rice) Nasu et al., 2002

384,431 SNP and 24,557 indels from two subspecies Feltus et al., 2004

Wheat

20 SNP from 12 wheat genotypes Somers et al., 2003

40 SNP from 10 wheat cultivars Ablett et al., 2006
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Dwarf8 in maize encodes a gibberellin response modulator from which

FM can be developed for plant height and flowering time. For example, nine

sequence motifs in the Dwarf8 gene of maize were shown to be associated

with variation in flowering time, and one particular 6‐bp deletion accounted

for 7–11 days diVerence in flowering time between inbreds (Thornsberry

et al., 2001). However, Dwarf8 is a pleiotropic gene (also aVecting plant

height) and thus needs to identify FM from ‘‘additional flowering time

genes’’ in addition to using Dwarf8‐derived FM. Orthologues to Dwarf8

have been identified in wheat (Rht1) (Peng et al., 1999), rice (SLR1) (Ikeda

et al., 2001a), and barley (sln1) (Chandler et al., 2002), and we know that

such genes were bred into the high‐yielding wheat and rice cultivars of the

Green Revolution (Hedden, 2003). Altered function of alleles in these ortho-

logous genes can reduce the response to gibberellin and consequently lead to

decreased plant height. Thus, biallelic (gibberellin sensitive and insensitive)

FM can be derived for targeted and rapid cultivar breeding aiming at

increased lodging tolerance. Brown midrib (bm) mutants in maize have an

increased digestibility but inferior agronomic performance (Barriere and

Argillier, 1993). Two of the four bm genes (bm1 and bm3) are involved in

monolignol biosynthesis (Barrière et al., 2003). These two genes and addi-

tional lignin biosynthesis genes have been isolated based on sequence homol-

ogy. Candidate genes putatively aVecting forage quality have been identified

by expression profiling using isogenic bm lines, and detected association

between a polymorphism at the caVeic acid O‐methyltransferase (COMT)

locus and digestible neutral detergent fiber (DNDF) in a collection of maize

inbred lines (Lübberstedt et al., 2005). Silage maize is a major source of

forage for dairy cattle due to its high‐energy content and good digestibility.

Lignin structure and cross‐linking between cell wall components influence

digestibility (Barrière et al., 2003). Analysis of allelic diversity in relation to

cell wall digestibility revealed ZmPox3 peroxidase, a candidate gene for

silage maize digestibility improvement (Guillet‐Claude et al., 2004), as it is

colocalized with a cell wall digestibility and lignification QTL (Barrière et al.,

2003). GBSS, starch branching enzymes 1 (SBE1) and 3 (SBE3), are major

enzymes involved in starch biosynthesis in rice endosperm. Using variation in

sequence diversity at Sbe1 and Sbe3 loci and Wx gene markers, Liu et al.

(2004c) diVerentiated an indica allele from a japonica allele for both Sbe1 and

Sbe3 loci. The same research team also showed that Wx and Sbe3 loci had

significant eVects on the amylose content (AC) variation, and together account

for 79% of the observed AC variation in a double‐haploid population. The

flavor and fragrance of Basmati and Jasmine rice is associated with increased

levels of 2‐acetyl‐1‐pyrroline (2AP) (Yoshihashi, 2002). Although various

methods are employed to select for fragrant rice, such methods are diYcult,

labor intensive, time consuming, require more sampling, and are often unreli-

able (Reinke et al., 1991). Fragrance in rice is a recessive trait and a deletion in
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the gene encoding BAD2 on chromosome 8 that disables the BAD2 enzyme is

themost likely cause of fragrance (Bradbury et al., 2005). Bradbury et al. (2005)

used a low‐cost robust technique, allele‐specific amplification (ASA), which

allows discrimination between fragrant and nonfragrant rice cultivars and

identifies homozygous fragrant, homozygous nonfragrant, and heterozygous

nonfragrant individuals in populations segregating for fragrance. This test

detects a 355‐bp fragment from a nonfragrant allele and a 257‐bp fragment

from a fragrant allele, allowing simple analysis on agarose gels. In wheat, two

candidate genes control a QTL for high‐molecular‐weight glutenin subunit

(HMW‐GS) GluBx: Glu‐B1‐1 (structural gene coding for Glu1Bx) and spa‐B
(the B homoeologous gene coding for SPA) located on the 1BL chromosome at

a distance of 1.3 cM from each other within the confidence interval of a QTL

for the quantity of GluBx (Guillaumie et al., 2004). In the absence of linkage

disequilibrium (LD) betweenGlu‐B1‐1 and spa‐B, Ravel et al. (2006) conducted

an association mapping (AM) study to identify the individual gene responsible

for the QTL, and detected significant associations only between Glu‐B1‐1
polymorphism and most of the traits (protein content, the quantity of HMW‐
GS, and protein fractions for each HMW‐GS) evaluated. Malt from barley

grains is the raw material for the production of beer. Genetic improvement of

malting quality is impaired by the quantitative inheritance and the compara-

tively low heritability. By monitoring mRNA profiles during grain germina-

tion, Potokina et al. (2004) identified between 17 and 30 candidate genes for

each of the 6 malting parameters, and 5 of the 8 mapped candidate genes

display linkage to known QTL for malting‐quality traits. Genes determining

growth habit are well known in diVerent species and all are recognized asCEN/

TFL1 homologous or CEN/TFL1‐like genes (Avila et al., 2006 and references

therein). Avila et al. (2006) designed primers for conserved domains from

sequences of TFL1/CEN‐like genes and used Hind1II enzyme to produce a

clear polymorphism between determinate and indeterminate genotypes in faba

bean. This cleaved amplified polymorphism (CAP) marker showed 100%

eYciency in discriminating determinate and nondeterminate individuals in an

F2 population segregating for growth habit. These examples demonstrate that

gene‐based markers are more robust than anonymous markers linked to the

trait loci of interest.
2. Genome Sequencing

Plant genome sizes vary from the modest—54 million base pairs (Mb) in

the bitter cress (Cardamine amara)—to the enormous—124,000 Mb in the

lily Fritillaria assyriaca. Among the most important food crops, rice has the

smallest genome (389 Mb) (IRGSP, 2005) and wheat has the largest genome

(15,999 Mb). Other crops could be grouped into seven classes based on the
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progressive increase in genome size: Musa, cowpea, and yam (555–613 Mb);

sorghum, bean, chickpea, and pigeon pea (709–818 Mb); soybean (1115 Mb);

potato and sweet potato (1597–1862 Mb); maize, pearl millet, and peanut

(2352–2813Mb); pea and barley (4397–5361 Mb); and oat (11,315 Mb)

(Arumuganathan and Earle, 1991). Although plant genomes vary substan-

tially in size, the larger genomes do not necessarily have proportionally more

genes, but instead the extra genome size is due to repetitive elements that

have proliferated in the genomes of plant species across the plant kingdom

(Bennetzen, 1998; Bennetzen et al., 1994).

Genome sequencing in most plants is diYcult because of the size and

complexity of the genomes. Rice is the first cereal to be fully sequenced

(Table IX) because of its importance as one of the major cereals in addition

to its small genome size, small number of chromosomes (n ¼ 12), well‐
characterized genetic and genomic resources, and availability of a large

number of DNA markers and high‐density genetic linkage map. The

extremely large genome of other crops makes them diYcult to sequence.

Sequencing hexaploid wheat could yield a considerable amount of important

new information about cereals and crop plant biology. The International

Wheat Genome Sequencing Consortium (IWGSC) has been formed to

advance agricultural research for wheat production and utilization by devel-

oping DNA‐based tools and resources that result from the complete sequenc-

ing of the expressed genome of common (hexaploid) bread wheat and to

ensure that these tools and the sequences are available for all to use without

restriction and cost (Gill et al., 2004; http://www.wheatgenome.org/).

Sorghum is an important bridge to closely related large‐genome crops in its

own tribe such as maize and sugarcane and thus provides a better road map

for study of these crops at the DNA level. Sorghum is also a C4 photo-

synthesis plant which uses a complex combination of biochemical and mor-

phological specializations that result in more eYcient carbon assimilation at

high temperature. The genus Sorghum also includes one of the world’s most

noxious weeds, the Johnsongrass (Sorghum halepense). The rapid dispersal,

high growth rate, and durability that make Johnsongrass such a troublesome

weed are actually desirable in many forage, turf, and high‐biomass crops that

are genetically complex. Therefore, sorghum oVers novel learning opportu-

nities relevant to weed biology as well as to improvement of a wide range

of forage crops.

The extremely large size of many cereal genomes makes it diYcult to

decode using the standard methods of genome sequencing such as clone‐
by‐clone (Lander et al., 2001) and whole‐genome shotgun (Venter et al.,

2001). Determining their complete sequences is daunting and costly. In recent

years, two genome filtration strategies, methylation filtration (MF)

(Rabinowicz et al., 1999) and C0t‐based cloning and sequencing (CBCS;

Peterson et al., 2002) or high C0t (HC; Yuan et al., 2003), have been

http://www.wheatgenome.org/


Table IX

Status of Genome Sequencing in Banana, Maize, Rice, and Sorghum

Summary of sequencing information References

Banana

Two BAC clones of M. acuminata sequenced: MuH9 is 82,723‐bp
long with an overall GþC content 38.2% and gene density of 1 per

6.9 kb while MuG9 73,268‐bp long with an overall G þ C content

38.5% and gene density of 1 per 10.5 kb

Aert et al., 2004

Maize

100,000 maize sequences reported using methylation filtration

method of genome sequencing

Palmer et al., 2003

One‐eighth of the genome of maize inbred B73 sequenced (307 Mb)

that contain large percentage of the genes and transposable

elements: repeat sequences 58% and genic regions 7.5%, with

�59,000 predicted genes

Messing et al., 2004

66% of the maize genome consists of repetitive elements;

retrotransposons far more frequent than DNA transposons;

full‐length genes averaged 4 kb; 42,000–56,000 genes predicted

Haberer et al., 2005

Rice

A draft sequence of indica variety 93–11 contains 46,022–55,615

genes. 80% of A. thaliana genes had a homologue in rice but only

49.4% of rice genes had a homologue in A. thaliana

Yu et al., 2002

A draft sequence of japonica variety Nipponbare consists of

32,000–50,000 predicted genes. 98% of the known maize, wheat,

and barley proteins are homologues to proteins in rice. Extensive

synteny and gene homology between rice and other cereals but

limited synteny with Arabidopsis

GoV et al., 2002

95% of the 389‐Mb sequenced genome detected 37,544

nontransposable‐element‐related protein‐coding genes of which

71% had a putative homologue in Arabidopsis. 29% of the 37,544

genes appear in clustered gene families. 2859 genes unique to rice

and other cereals, and some might diVerentiate monocot and dicot

lineages

IRGSP, 2005

Of the 38,000–40,000 genes, only 2–3% of these unique to the

genomes of indica and japonica rice; 18 distinct pairs of duplicated

segments cover 65.7% of the genome and 17 of these pairs date

back to a common time before the divergence of the grasses

Yu et al., 2005

Sorghum

300 Mb of the 735‐Mb of sorghum genome sequenced, tagging 96%

of the genes with an average coverage of 65% across their length

Bedell et al., 2005
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suggested for selectively sequencing the gene space of large genomes. MF is

based on the characteristics of plant genomes in which genes are largely

hypomethylated but repeated sequences are highly methylated. Methylated

DNA is cleaved when transferred into an Mcr þ Escherichia coli strain and

only hypomethylated DNA is recovered. CBCS/HC separates single‐ and



APPLIED CROP GENOMICS 191
low‐copy sequences, including most genes, from the repeated sequences on

the basis of their diVerential renaturation characteristics. Using the MF

strategy, Bedell et al. (2005) sequenced 96% of the genes in sorghum with

an average coverage of 65% across their length. This strategy filtered away

repetitive elements when sequencing the genome of sorghum that reduced the

amount of sorghum DNA to be sequenced by two‐third, from 735 Mb to

�250 Mb. Both MF and HC have been used for eYcient characterization of

maize gene space (Palmer et al., 2003; Whitelaw et al., 2003). Using HC and

MF, Martienssen et al. (2004) generated up to twofold coverage of the gene

space with less than 1 million sequencing reads and simulations using

sequenced BAC clones predicted that 5� coverage of gene‐rich regions,

accompanied by less than 1� coverage of subclones from BAC contigs, will

generate high‐quality mapped sequence that meets the needs of geneticists

while accommodating unusually high levels of structural polymorphism.

Haberer et al. (2005) selected 100 random regions averaging 144 kb in size,

representing about 0.6% of the genome, to define their content of genes and

repeats for characterizing the structure and architecture of the maize genome

(Table IX). Combining CBCS with genome filtration can greatly reduce the

cost while retaining the high coverage of genic regions. An alternative

approach is the identification of gene‐rich regions on a detailed physical

map and sequencing large‐insert clones from these regions.

The banana genome is relatively small, 500‐ to 600‐Mb (slightly bigger

than rice) DNA across 11 chromosomes. A GlobalMusaGenomics Consor-

tium (GMGC) is already in place to decode the Musa genome (http://www.

newscientist.com/article.ns?id‐dn1037); already two BAC clones of Musa

acuminata Calcutta 4 have been sequenced (Table IX). The Musa genome

has unique characteristics that will provide researchers with a powerful

model for investigating fundamental questions with potentially widespread

applications to agriculture. For example, comparing the genome of wild

bananas that reproduce sexually with those of asexual crop bananas will

provide insights into how quickly plant genomes evolve or comparing the

genomes of wild Asian cultivars with those of African cultivars will provide an

uncommon look at the eVects of disease agents on genome evolution of the two

species (M. acuminata and M. balbisiana), which gave rise to most cultivated

bananas. A Global Cassava Partnership (GCP), an alliance of the world’s

leading cassava researchers and developers, has proposed that sequencing the

cassava genome should be a priority (Fauquet and Tohme, 2004). The US

Department of Energy’s Joint Genome Institute (JGI) is providing fund and

technical assistance to decode the cassava genome involving 10 institutes

(http://www.ars.usda.gov/is/pr/2006/060830.htm). The benefits of deciphering

cassava’s genetic code include not only high‐yielding pest‐ and disease‐resistant
cultivars with high protein content but also boosting its potential for fuel

ethanol in developing countries. Genomic information from cassava could

http://www.newscientist.com/article.ns?id-dn1037
http://www.newscientist.com/article.ns?id-dn1037
http://www.ars.usda.gov/is/pr/2006/060830.htm
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also expedite research to reestablish castor bean, a close relative, as domestic

source of industrial oil, minus the toxin ricin. Researchers from Purdue Uni-

versity and those from the JGI are sequencing the genome of soybean, Glycine

max, the world’s most valuable legume crop, to locate genes on the soybean

chromosomes in order to create a physical map. Integrating the physical map

with parts of the geneticmap already available will ultimately allow sequencing

of the entire soybean genome (http://www.csrees.usda.gov/newsroom/news/

csrees_news/06news/soybean_dna.html).

Completed genome sequences provide templates for the design of genome

analysis tools in orphan species lacking sequence information. For example,

Feltus et al. (2006) designed 384 PCR primers to conserve exonic regions

flanking introns, using sorghum andmillet EST alignment to the rice genome.

These conserved‐intron scanning primers (CISPs) amplified single‐copy loci

at 37 to 80% success rates; that is, sampling most of the �50 million years of

divergence among grass species. When evaluating 124 CISPs across rice,

sorghum, millet, Bermuda grass, tef, maize, wheat, and barley, about 18.5%

of them seemed to be subject to rigid intron size constraints that were inde-

pendent of per nucleotide DNA sequence variation. Likewise, about 487

conserved‐noncoding sequence motifs were identified in 129 CISP loci. As

pointed out by Feltus et al. (2006), CISP provides the means to eVectively
explore poorly characterized genomes for both polymorphism and noncoding

sequence conservation on a genome‐wide or candidate gene basis, and also

provides anchor points for comparative genomics across a diverse range of

species. After sequencing the whole genome of the major food crops, plant

breeders may access new gene tools that will facilitate their ability to select

outstanding individuals with resistance to biotic and abiotic stresses, posses-

sing good seed quality, and producing more than the existing available

cultivars.
C. GENETIC LINKAGE MAP

Genetic linkage mapping refers to determining the order and genetic

distance between loci along chromosomes using recombination‐based infor-

mation in segregating populations. In contrast, physical mapping determines

the absolute distance between diVerent parts of the genome. Generally,

researchers have started by producing a high‐resolution genetic map popu-

lated with markers; then produced, fingerprinted, and assembled a deep‐
coverage library of bacterial artificial chromosomes (BACs); and then

through comparative analysis of molecular markers, integrated the genetic

and physical maps.

Marker‐dense meiotic linkage maps serve multiple purposes ranging from

dissection of simple and complex phenotypes to the isolation of genes by

http://www.csrees.usda.gov/newsroom/news/csrees_news/06news/soybean_dna.html
http://www.csrees.usda.gov/newsroom/news/csrees_news/06news/soybean_dna.html
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map‐based cloning (Tanksley et al., 1995), facilitating for the construction of

physical maps (Klein et al., 2000), and for developingMAS of desirable genes

in breeding programs (Burr et al., 1983; Tanksley et al., 1989). Meiotic

linkage mapping uses the frequency of recombination events that occur

during meiosis as a basis for calculating genetic distances between loci. The

observed recombination frequency is commonly converted into map units

(Centimorgan) by applying a mapping function (Kosambi, 1944), and by

following the segregation of genetic markers in a meiotic mapping popula-

tion, recombination events are linearly ordered along each chromosome,

thus defining intervening segments of chromosomes, which vary in both

physical and genetic size. The size of the mapping population, the number

of markers, and the number of recombination events that occur during

meiosis greatly influence the quality of resultant map. The genetic map

provides a framework for anchoring the physical map. Deep‐coverage
large‐insert genomic libraries, such as yeast artificial chromosomes (YAC)

or BACs, are used for constructing the physical map. BACs are most pre-

ferred over YAC in plants for the construction of large‐insert genomic

libraries as they are easy to manipulate, produce low frequency of chimerism,

and the clones are highly stable. By merging probe‐to‐BAC hybridization

data with DNA fingerprint data, and using the BACRF method (Lin et al.,

2000) to resolve the chromosomal origin of BAC clones detected by multiple‐
DNA probes, the robustness of a physical map is improved over other

methods that use arbitrary primer PCR‐based fingerprinting of complex

DNA populations resulting from pooling of low‐coverage BAC libraries

(Klein et al., 2000). Cytogenetic stocks can also be used to generate a physical

map by using genetically mapped DNA markers linked to specific chromo-

somal segments in cytogenetic stocks. However, isolation of a large number

of cytogenetic stocks is a daunting task and not possible at all in some crops.

For example, deletion stocks are generally not viable in diploid species.

Additionally, the resolution of a physical map based on cytogenetic stocks

is not only dependent on the number of stocks but also on the accuracy of

their cytological characterization. A cytologically defined chromosomal frag-

ment can include several megabases of DNA, which could significantly limit

the power of such physical maps. The integrated genetic and physical genome

maps are extremely valuable for map‐based gene isolation, comparative

genome analysis, and as sources of sequence‐ready clones for genome

sequencing.

Genetic linkage maps are reported for most of the legumes (Dwivedi et al.,

2005; Table X ) and for cereals, and clonal crops ( Table X ), but with varyi ng

marker density and genomic coverage. For example, crops such as barley,

maize, potato, rice, sorghum, and wheat have high‐density genetic maps,

while cassava, Musa, oat, pearl millet, sweet potato, and yam have less

saturated genetic linkage maps. Soybean and common bean are the only



Table X

Overview of the Genetic and/or Physical Maps Reported in Azuki Bean, Banana, Barley, Black Gram, Cassava, Maize, Oat, Peanut, Pearl Millet, Potato,

Rice, Sorghum, Sweet Potato, Wheat, and Yam

Marker and mapping population Summary of the genetic and/or physical map References

Azuki bean

486 markers (SSR, RFLP, AFLP) and

187 BC1F1 (JP81481� Vigna nepalensis)

486 markers mapped into 11 LGs spanning 832.1 cM with an average marker distance

of 1.85 cM, 95% genome coverage, LGs length ranging from 54 to 124 cM and

marker loci from 28 to 75 per LG

Han et al., 2005

Banana

90 markers (RFLP, RAPD, isozyme) on

92 F2 (SF265 � Banksii)

77 of the 90 loci mapped on 15 LGs (ranging from 4 to 80 cM) with a total map length

of 606 cM while 13 segregated independently

Fauré et al., 1993

Barley

252 SSR and 86 DHL

(Lina � H. spontaneum)

242 markers on 7 LGs, with a total map length of 1173 cM that is comparable to those

observed in DHLs using RFLPs (Heun et al., 1996) but showing strong segregation

distortion around the centromeric region of chromosome 2 H

Ramsay et al.,

2000

1172 markers (AFLP, SSR, STS, and vrs1)

and 95 RIL (Russia 6 � H.E.S. 4)

The map consists of 7 LGs with a total distance of 1595.7 cM, and average

marker density of 1.4 cM per locus. This map length longer than those of

Ramsay et al. (2000) (1173 cM) or Costa et al. (2001) (1387 cM)

Hori et al., 2003

1237 markers (SNP, SSR, RFLP, AFLP)

and 3 DH populations

The integrated map based on 3 mapping populations consisted of 1237 loci, grouped

into 7 LGs, with a total map length of 1211 cM and an average marker density of

1 locus per centimorgan

Rostoks et al.,

2005

Black gram

145 markers (RFLP, AFLP, SSR, and

morphological) and 180 BC1F1

The map consists of 11 LGs with a total distance of 783 cM, markers per LGs ranging

from 6 to 23 and average distance between markers varying from 3.5 to 9.3 cM

Chaitieng et al.,

2006

Cassava

168 markers (RFLP, RAPD,

SSR, isozymes) and

(TMS 30573 � CM 2177‐2) F1

The map consists of 20 LGs spanning 931.6 cM, with an average marker density

7.9 cM and covering 60% of the cassava genome. The male gametes‐derived map

contains 159 markers, 24 LGs, and 1220 cM map. Reduced recombination in

gametes of the female parent resulted greater genetic distances on the male

gamete‐derived map between markers common to both parents

Fregene et al.,

1997
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472 SSR and 286 F2 (TMS 30572 � CM

2177‐2)
The map has 100 markers spanning 1236.7 cM, distributed on 22 LGs with an average

marker density of 12.36 cM, and markers uniformly distributed across cassava

genome

Okogbenin et al.,

2006

Maize

1736 markers (EST and STS, 90 core

marker, and 237 from other grass

species) and 54 F2 (Tx303 � Co159)

The 1736 loci mapped on 10 LGs, with a total map length of 1727.4 cM and marker

density of 0. 9 cM. 90 core markers with even spacing along chromosome delineate

the 100 bins on the map with an average bin size of 17 cM. This map provides a

more than fivefold increase in number of loci compared to previous map published

in this population (Chao et al., 1994) but slightly smaller than that of Matz et al.,

1995 (1883.6 cM) and Causse et al., 1996 (1765 cM)

Davis et al., 1999

184 RFLP and 748 SSR and 277 RIL

(B73 � Mo17)

The 803 loci mapped on 10 LGs, with a total map length 4906 cM (347.7–714.5 cM per

chromosome) of IBM map, with an average marker density of 6.6 cM

Sharopova et al.,

2002

954 cDNA probes and two RIL

populations: IBM (B37 � Mo17) and

LHRF (F2 � F252)

Framework maps consists of 237 and 271 loci in IBM and LHRF populations, that

both maps contain 1454 loci (1056 on IBM_Gnp2004 and 398 on LHRF_Gnp2004)

corresponding to 954 cDNA probes, and map size of 1825 cM for IBM_Gnp2004

and 1862 cM for LHRF_Gnp2004

Falque et al.,

2005

Oat

441 markers (RFLP, AFLP, RAPD, STS,

SSR, isozyme, morphological) and 136

F6:7 RIL (Ogle � TAM O‐301)

426 loci produced 34 LGs (with 2–43 loci each) spanning 2049 cM of the oat genome

(from 4.2 to 174.0 cM per LG). Comparisons with other Avena maps revealed

35 genome regions syntenic between hexaploid maps and 16–34 regions conserved

between diploid and hexaploid maps. 89–95% conservation of diploid genome

regions on the hexaploid map; however, much lower colinearity at whole

chromosome level

Portyanko et al.,

2001

510 markers (RFLP, AFLP, and SSR) and

152 F2:6 RIL (Ogle � MAM17‐5) (OM)

28 LGs, containing from 3 to 33 markers and varying in size from 5.2 to 123.0 cM,

with a total distance of 1396.7 cM. Comparison with previously published

hexaploid map from Kanota � Ogle (KO) (O’Donoughue et al., 1995) revealed

9 OM LGs homologous to the LGs in the KO map

Zhu and

Kaeppler, 2003
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Table X (continued )

Marker and mapping population Summary of the genetic and/or physical map References

Peanut

204 SSR and 93 F2 (Arachis

duranensis � Arachis stenosperma)

SSR‐ and AA‐genome‐based map consists of 11 LGs covering 1230.89 cM, with an

average marker density of 7.24 cM. This map is comparable to the 1063 cM in

previously reported map from two AA‐genome diploid species (Halward et al.,

1993) and to half of the 2210 cM reported for tetraploid map (Burow et al., 2001)

Moretzsohn

et al., 2005

Pearl millet

418 (RFLP and SSR) markers and four

populations

A consensus genetic map of 353 RFLP and 65 SSR markers mapped on 7 LGs, with

85% of the markers clustered and occupy less than a third of the total map length;

marker density in four maps ranged from 1.49 to 5.8 cM.

Qi et al., 2004

Potato

230 RFLP probes and two mapping

populations

304 RFLP loci mapped on the 12 LGs with a total map length of 1034 cM and marker

density of 3.4 cM. Comparisons between potato RFLP maps revealed conservation

of marker order but diVerences in chromosome and total map length

Gebhardt et al.,

1991

RFLP (potato and tomato) and BC1

[(Solanum tuberosum � Solanum

berthaultii) S. berthaultii]

High‐density map contains more than 1000 markers with an average marker density of

�1.2 cM, diVerentiating the tomato and potato genomes by 5 chromosomal

inversions

Tanksley et al.,

1992

>10,000 AFLP markers and heterozygous

diploid potato

An ultradense genetic linkage map with >10,000 AFLP loci, with marker density

proportional to physical distance and independent of recombination frequency

van Os et al.,

2006

Rice

726 markers and 113 BC1 (BS125�WL02)

BS125

The map consists of 12 LGs with a total distance of 1491 cM and average marker

density of 4.0 cM on the framework map, and 2.0 cM overall

Causse et al.,

1994

2275 markers and 186 (Nipponbare �
Kasalath) F2

The map consists of 12 LGs with a total distance of 1521.6 cM, and average marker

density of 0. 67 cM per locus

Harushima et al.,

1998

703 markers and japonica cultivar

Nipponbare

Physical map of rice chromosome 10 developed using FISH mapping of BAC clones

on meiotic pachytene chromosomes that fully integrate with a genetic linkage map

of rice chromosome 10 with uniform distribution of genetic recombination but with

suppression in centromeric region

Cheng et al., 2001

BAC‐based physical map of chromosome 4 consists of 11 contigs with a total length of

34.5 Mb, 94% of the chromosome size (36.8 Mb), long and short arm length 5.13

and 2.9 Mb, respectively

Zhao et al., 2002
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BAC‐based physical map of rice developed that represents�90.6% of the rice genome,

and its comparison with genetic map reveals that recombination is suppressed

severely in centromeric regions as well on short arms of chromosomes 4 and 10

Chen et al., 2002

6713 EST from 19 Nipponobare cDNA

libraries screened on 4387 YAC clones

YAC‐based transcript map consists of 6591 ESTs covering 80.8% of the genome, with

chromosomes 1, 2, and 3 have relatively high EST densities, approximately twice

those of chromosomes 11 and 12, and contain 41% of the total EST sites on the map.

Most EST dense regions distributed on the distal regions of each chromosome arm

Wu et al., 2002b

Sorghum

470 loci (147 SSR, 323 RFLP) and 137

RIL (BTx623 � IS3620C)

The map consists of 470 loci that mapped into 10 LGs, with a total map distance of

1406 cM and average marker density of 2.99 cM

Bhattramakki

et al., 2000

2590 PCR‐based markers and 137 RIL

(BTx623 � IS3620C)

The 1713 cMmap encompassed 2926 loci distributed on 10 LGs, and markers mapped

between 121 and 243 on these LGs

Menz et al., 2002

187 markers on 225 RIP 1 (IS9830 �
E 36‐1) and 228 markers on 226 RIP2

(N13 � E36‐1)

The RIP 1 map consisted of 187 markers (AFLPs, SSRs, RFLPs, and RAPDs)

distributed over 10 LGs with a total map length of 1265 cM while RIP 2 map had

228 markers spread into 12 LGs with a total map length of 1410 cM. The combined

map contained 339 markers on 11 LGs with a map length of 1424 cM, comparing

well with other maps except for few inversion, deletions, and additional distal

regions

Haussmann

et al., 2002

2050 RFLP probes and 65 F2 (Sorghum

bicolor � S. propinquum)

The S. bicolor � S. propinquum map is composed of 2512 loci on 10 LGs that

collectively span 1059.2 cM, with an average marker density of 0.4 cM

Bowers et al.,

2003

Sweet potato

AFLP markers and (Tanzania �
Bikilamaliya) F2 population

632 (Tanzania) and 435 (Bikilamaliya) AFLP markers placed in 90 and 80 LGs,

respectively. Total map lengths were 3655.6 and 3011.5 cM, respectively, with an

average distance of 5.8 and 6.9 cM, respectively, between adjacent markers

Kriegner et al.,

2003
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Table X (continued )

Marker and mapping population Summary of the genetic and/or physical map References

Wheat

230 SSR and ITMI population

(Opata 85 � W7984)

279 loci amplified by 230 primers placed on to a genetic framework map composed of

RFLPs previously mapped in ITMI population. 93 loci mapped to the A genome,

115 to the B genome, and 71 to the D genome. The markers randomly distributed

along the linkage map, with clustering in several centromeric regions

Röder et al., 1998

567 markers (RFLP, AFLP, SSR, and

morphological and biochemical) and

96 DHL (CS � SQ1)

The genetic map consists of 567 markers assigned to 21 LGs, with a total map length

of 3521.7 cM. Approximately similar map length for the A (1148.0 cM),

B (1204.8 cM), and D (1168.9 cM) genomes but the D genome had only half the

markers (115) of the other two genomes (A, 224; B, 228). This map is very similar in

length to those reported for the ITMI map (3551 cM), CS � Synthetic map

(2,830 cM), Arina � Forno map (3086 cM), and other 3 maps of 3164–4110 cM

Quarrie et al.,

2005 and

references

therein

478 SSR and 96 DHL

(Kitamoe � Münstertaler)

The first SSR‐based linkage map from intraspecific cross of common wheat consisted

of 464 loci spread into 23 LGs, with a total map length of 3441 cM covering 86%

wheat genome

Torada et al.,

2006

Yam

341 AFLP markers and intraspecific F1

population

The maternal map consists of 155 markers, 12 LGs, 891 cM map distance and 7.4 cM

marker density while the paternal map contains 157 markers, 13 LGs, 852 cM map

distance and 6.5 cM marker density

Mignouna et al.,

2002a
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legume crops that have saturated maps (Dwivedi et al., 2005). The large

variation in map length results from diVerences in number of chromosomes

and total size of the genomes as well as the use of diVerent numbers of

markers (increasing the number of markers will generally, until a certain

threshold is reached, give a larger total map length), inclusion of skewed

markers (that tend to exaggerate map distances), and use of diVerent
mapping software (which vary in estimates of genetic distances). In addition,

many published maps report more linkage groups (LGs) than the basic

chromosome number of that species. This is frequently the result of insuY-
cient marker density, as most saturate maps can be directly aligned with the

basic chromosome complement (Tekeoglu et al., 2002).

The generation of integrated genetic and physical maps in many crops of

significant economic importance is a daunting task because of large genome

size, large amount of repetitive DNA, and polyploidy nature. However,

genome‐wide physical maps are reported in rice (Chen et al., 2002; Cheng

et al., 2001), sorghum (Klein et al., 2000), and maize (Coe et al., 2002; Cone

et al., 2002; Yim et al., 2002), which will be useful in genome sequencing,

targeted marker development, eYcient positional cloning, and high‐
throughput EST mapping in these and also closely related lesser studied

crops wherein the genomic resources are not as developed as in these crops.

For example, the sorghum genetic and physical map has been aligned to

varying degrees with the genetic maps of wheat, rice, sugarcane, maize, and

Arabidopsis and with the QTL mapped in these taxa.

There is a growing awareness that levels and patterns of allelic diversity

are related to the chromosomal context of a locus. ‘‘Diversity maps’’ showing

the distribution(s) of allelic diversity across the chromosomes and genomes

of a variety of organisms are also related to structural features of chromo-

somes such as centromeres and telomeres and with the unique selection

pressure specific to certain gene pools (Dvorak et al., 1998; Gaut et al.,

2000; Hamblin and Aquadro, 1999). Diversity analysis of individual genes

promises to shed new light on crop productivity and evolutionary processes

underlying plant domestication (Wang et al., 1999). When Draye et al. (2001)

constructed diversity maps with genome‐wide resolution based on neutral

DNA markers for three gene pools in sorghum (Sorghum propinquum,

S. halepense, and S. almum), they found a number of common features and

also some key diVerences. Each gene pool showed low levels of variation near

the central region of the LG ‘‘G’’ and both termini of the LG. The cultivated

sorghum showed by far the lowest level of diversity of the three gene pools,

the exotic diploid sorghum showed intermediate diversity, and the polyploids

showed remarkably high levels of diversity. Similarly in one region near the

marker Psb347, the tetraploid gene pool showed unusually high level of

diversity, whereas the two diploid gene pools each showed unusually low

levels of diversity. Crops with high resolution of genetic maps, such as rice,
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maize, and sorghum, are ideal for developing diversity maps that promise

new information about the consequences of natural selection, domestication,

and polyploidy formation. Clearly, the approach of relating molecular level

variation to phenotypic diversity is an essential precursor for diversity anal-

ysis studies using large populations of candidate genes. In this way, QTL

information can be used together with association approaches to select a

small number of candidates most likely to be directly related to a specific

phenotype.
D. MARKER‐TRAIT ASSOCIATIONS FROM ANALYSIS OF

DIVERSE GERMPLASM

Conventional genetic linkage mapping approaches for polygenic traits are

confounded by epistasis (adaptation and phenology traits influencing the

target trait) and GEI (reducing the accuracy of phenotype data) that erodes

the precision and power of QTL detection. In addition, linkage mapping has

two other major constraints, particularly aVecting practical applications:

(1) marker‐trait associations determined in genetic populations must be

validated in target breeding populations before routine application can

be considered which is time consuming and often introduces a major level

of redundancy into the process, and (2) marker‐trait associations identified in

this way are based on genetic distance in the mapping population and tight

linkage (and thus power of selection) may be eroded or lost entirely when the

marker is applied to breeding populations with very diVerent recombination

patterns between the target loci and marker. Association mapping (AM),

also known as linkage disequilibrium (LD) mapping, is a method that relies

on LD to study the relationship between phenotypic variation and genetic

polymorphism (Flint‐Garcia et al., 2003). LD refers to nonrandom associa-

tion between two markers, or two genes, or between a gene and a marker

locus. Mutation, population structure, epistasis, population perturbations

like migration, inbreeding, and selection all influence LD, and some of these

can lead to spurious associations (Jannink and Walsh, 2002). AM deals with

unrelated individuals or members of a family with varying levels of pheno-

typic expression that are evaluated to detect and measure the degree of

association between molecular markers and traits of interest. The principal

advantage of this procedure lies in its ability to capture informative data

stored in unrelated individuals who have undergone several rounds of gene

shuZing over multiple generations. Significantly, it can be used on material

oVering better overall relevance to breeding programs and thus reduce the

level of redundancy between marker identification and marker validation

steps. AM can be investigated using candidate genes as well from randomly

chosen molecular markers that are evenly distributed across genome. Indeed,
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for outbreeding crops such as maize, the use of this type of marker in AM is

highly desired.

There are many reviews describing the fundamentals of LD mapping

(Boreck and Suarez, 2001; Flint‐Garcia et al., 2003; Gupta et al., 2005a;

Rafalski and Morgante, 2004). Both gene‐based and genome‐wide or

chromosome‐wide LD‐based AM detected association of DNA markers

with ecology, geography, disease resistance, and agronomic and seed quality

traits in higher plants, thus being a viable alternative to classical QTL

analyses (Dwivedi et al., 2005 and references therein; Breseghello and

Sorrells, 2006a; Gupta et al., 2005a; Kraakman et al., 2006; Maccaferri

et al., 2005; Malysheva‐Otto et al., 2006; Morrell et al., 2005; Roy et al.,

2006; Stich et al., 2006; Szalma et al., 2005). In addition, many of the

associated markers were located in chromosome regions previously identified

as harboring QTL for yield and yield components, providing good validation

that AM of diverse germplasm is a viable alternative to classical QTL

analyses based on crosses between inbred lines (genetic populations), espe-

cially for complex traits (Breseghello and Sorrells, 2006a; Kraakman et al.,

2006; Szalma et al., 2005). Large variation in LD estimates in diVerent plant
genomes or in diVerent parts of the genome of an individual species is

reported: 10–20 cM in barley and wheat, 100 kb in rice, <4 to �10 kb in

sorghum,<50 kb in soybean (all self‐pollinated species). The LD estimates in

cross‐pollinated crops ranged from 0.4 to 1.0 kb in maize, <3 cM in sugar

beet, 0.3–1.0 cM in potato, and 10 cM in sugarcane (Gupta et al., 2005a and

references therein). Inbreeding drives lineages to homozygosity rendering

recombinations ineVective in breaking down LD, while rapid decay of LD

in outbreeding is probably because of increased crossover eVects. Popula-
tion‐wide associations between loci due to LD can be used to map QTL with

high resolution. However, spurious associations between markers and QTL

can also arise as a consequence of population stratification and statistical

methods that cannot diVerentiate between loci associations due to linkage

disequilibria from those caused in other ways can render false‐positive results
(Deng et al., 2001). The transmission‐disequilibrium test (TDT) is a robust

test for detecting QTL. TDT exploits within‐family associations that are not

aVected by population stratification (Spielman et al., 1993). It is used to

check jointly for linkage and LD by testing whether alleles at a particular

marker locus segregate randomly from parents to a specific subset of their

oVspring. TDTs have been developed for dichotomous and quantitative

traits (Allison, 1997; Martin et al., 2000; Rabinowitz, 1997; Zhao et al.,

2000). However, some TDTs are formulated in a rigid form, with reduced

potential applications. Hernández‐Sánchez et al. (2003) developed TDT that

uses mixed linear models to allow greater statistical flexibility. In this test,

allelic eVects are estimated with two independent parameters: one exploiting

the robust within‐family information and the other the potentially biased
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between‐family information. Using this approach, they confirmed previous

observations on eVects of the fourth melanocortin receptor (MC4R) on

production traits in pig that polymorphism is either causal or in very strong

LD with the causal mutation, and provided no evidence for spurious

associations.

Breseghello and Sorrells (2006b) compared the potentials and limitations

of germplasm bank collections, synthetic populations, and elite germplasm

as experimental materials for association analysis integrated with plant

breeding practices and the application of AM diVers among those popula-

tions in several aspects. They found that synthetics oVer the most favorable

balance of power and precision for association analysis and would allow

mapping of quantitative traits with increasing resolution through cycles of

intermating. Hence, Breseghello and Sorrells (2006b) proposed a model to

describe the association between markers and genes as conditional probabil-

ities in synthetic populations under recurrent selection, which can be com-

puted on the basis of assumptions related to the history of the population.

This model is useful for predicting the potential of diVerent populations for
association analysis and forecasting the response to MAS.

For eYcient integration of AM with other methods currently in use,

materials that are routinely generated and evaluated should be used for

both purposes. For example, in case of germplasm, core collections (see

Section II.A) are expected to represent a large proportion of the total genetic

variability with a manageable number of accessions, and thus are suitable for

genetic studies. Core collections representing the genetic diversity of a species

are attractive for AM because of the wide allele diversity encompassed within

a relatively small number of genotypes for which replicated multilocational

precision phenotyping is feasible. The level of LD in a crop germplasm

collection determines the scale at which AM will resolve the localization of

favorable variation in the genome. The use of genome‐wide survey for

selecting a less‐structured subsample of accession improves the significance

of results and thus opens the door to genome‐wide association studies and

supports the identification of reference collection to integrate phenotypic and

molecular characterization eVorts (Deu and Glaszmann, 2004). The process

of selection of a minimum sample with maximum variation has a normalizing

eVect that is expected to reduce population structure and LD between

unlinked loci, thus creating a situation favorable for AM (Breseghello and

Sorrells, 2006a). A diYculty likely to occur in this type of material is related

to genetic heterogeneity within samples. Thus, it is not recommended at this

time to use primary landraces and natural populations or any other mixture

of genotypes, which will confound the genotyping and erode the precision of

phenotyping. For elite materials, the sample could be composed of lines and

checks evaluated in regional trials, whereas for synthetic populations, the

evaluation unit should be largely homogeneous, whether it is an individual or
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a family. Core collections are useful materials for AM for quality traits such

as disease resistance, seed quality, and domestication‐related traits. Con-

versely, the broad genetic variability of those collections normally makes

them unsuitable for analysis of quantitative traits because part of accessions

would be unadapted to the growing conditions and prevalent diseases of the

test environment, resulting in poor precision of trait measurement. Similarly,

phenological traits are likely to be highly variable in core collections which

will highly confound attempts to measure traits such as abiotic stress toler-

ances. Elite lines are the most desirable materials for AM when attempting

to analyze low heritability traits, including yield, yield components, and

tolerance to abiotic stresses because elite lines are genetically stable and are

well adapted to specific known growing conditions (Breseghello and Sorrells,

2006b). Synthetic populations are normally designed and maintained by

random mating, and therefore population structure is expected to be mild

or absent, which is an important advantage of synthetics for AM. The level of

LD in synthetic populations is expected to be high in the initial generations,

such that a genome scan could detect large chromosome segments associated

with traits, and trace them back to parental haplotypes. In subsequent

generations, the decay of LD by recombination would favor refined

mapping. However, synthetic populations are often subjected to intense

recurrent selection which could build up LD by favoring allelic combinations

or by promoting genetic drift (Palaisa et al., 2003). For this reason, popula-

tions subjected to mild or no selection would be preferred for AM. Alterna-

tively, marker analysis of a large number of available genotypes can be used

to define a subset of lines that represent the desired population structure for

AM. AM in synthetic populations under selection will require intensive

genotyping because in each cycle, new progenies have to be tested to reflect

the current state of the population and for implementation of MAS. On the

other hand, information about the population is cumulative over years,

allowing a progressively refined genetic analysis of traits of interest to the

breeding programs.

Both linkage analyses (LA) and LD mapping have their own limitations

when used alone. Therefore, a joint linkage and LD mapping strategy has

been devised for genetic mapping (Wu and Zeng, 2001; Wu et al., 2002a) that

has power to simultaneously capture the information about the linkage of the

markers (as measured by recombination fraction) and the degree of LD

created at historic time. This approach is based on the principle that during

the transmission of genes from parents to progeny, linkage between marker

and QTL is broken due to meiotic recombination. Thus, by combining the

information about the linkage and LD, the joint mapping method displays

increased power to detect LD compared to traditional methods of LD

analyses. The use of this approach has also been suggested for multitrait

fine‐mapping of QTL (Lund et al., 2003; Meuwissen and Goddard, 2004).
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Like the genetic and physical maps developed in many plant genomes, LD

maps can also be constructed in plants as is being done in humans using

ALLASS and LDMAP VERSION 0.1 (University of Southampton, United

Kingdom) softwares. These LD maps will make use of molecular markers

that flank marker intervals delimited on the basis of estimations of LD, the

distance being represented as LD units (Zhang et al., 2002).
III. MARKER VALIDATION AND REFINEMENT
It is clear from Section II that there have been major advances that have

occurred in the development of DNA markers, construction of genetic

linkage maps, and the mapping of economic traits controlled by major

genes and QTL. While the number of reports of mapped genes continues to

grow rapidly, the literature on practical validation application of those

markers in breeding populations remains relatively limited. One reason for

this is that there are several scientific and logistical issues that must be

resolved before a practical MAS strategy can flow from a mapping study,

and at each step there will be a certain level of redundancy. Moreover, in

some cases, researchers are more interested in understanding the genetic

control of the trait and subsequent gene discovery, thus leave the validation

and application to plant breeders who may be less interested in publishing

their findings. Furthermore, once the mapping study is published, it may be

diYcult to publish the results of activities associated with validation, refine-

ment, and application of those markers, particularly if the selective power of

the marker lessened or lost when applied in breeding programs. This gener-

ally involves validation of the QTL or gene marker in a diVerent set of

germplasm or populations and development of markers assays suitable for

high throughput, low cost, and MAS (Collard and Mackill, 2007; Langridge

et al., 2001). Marker validation step usually has some level of redundancy

leading to the need to develop new markers or marker types around the

target locus in order to find more polymorphic markers or develop gene‐
based markers for marker‐trait associations that are shared across diVerent
breeding populations. The availability of thousands of SNP markers rather

than several hundreds of SSR markers in some crops (Table VIII) that are

currently being used makes it practical to validate marker‐trait association
through high‐precision genotyping using the same set of markers for diVerent
parental lines and breeding populations. Thus, it is much more likely that

the parents of any breeding population will be polymorphic for at least one of

them, allowing breeders to track the alleles donated from each parent

throughout the breeding process, speeding MAS and marker‐assisted back

crossing (MABC) in any cross. Marker validation can be also done through



APPLIED CROP GENOMICS 205
selective genotyping and pooled DNA analysis, and development of gene‐
based markers and closely linked markers, as additions to testing marker‐
trait association in alternative or target populations. However, validation

requirements can be minimized by MAS using large‐eVect QTL, precision

phenotyping, identification of context independent QTL, mapping as we go,

AM using large numbers of inbreds, genome‐wide association scan, using

breeding materials for mapping, and utilization of haplotype‐based selection

rather than single‐marker based selection.
A. MARKERS FOR SIMPLY INHERITED TRAITS

For major gene traits such as many disease resistances, gene validation

is fairly straightforward. In these cases, the eVect of genetic background is

usually minimal, and the ease of phenotyping makes fine‐mapping of the

gene simpler. In mapping studies, a gene for simply inherited trait can be

mapped with adequate accuracy in a mapping population of 100–200 indi-

viduals. This can then be followed by fine‐mapping involving larger popu-

lations of over 500 individuals. The fine‐mapping will allow identification

of tightly linked markers that will not suVer recombination between marker

and target gene in segregating breeding populations. An alternative to use a

tightly linked gene in MAS is to use flanking markers on either side of the

gene. Use of both flanking markers ensures that the gene is accurately

detected in segregating populations, but it can also result in the transfer of

large chromosomal fragments along with the target gene (linkage drag) if the

interval between the two markers is large. If the donor of the gene contains

deleterious alleles that are linked to the target gene, it will be necessary to

identify more tightly linked flanking markers (Frisch et al., 1999a; Tanksley

et al., 1989). The process of fine‐mapping can be carried forward to posi-

tional cloning of the target gene. Plant populations of several thousands are

commonly used even in species with small genomes where recombination

rates might be around 250 kb cM�1 (Durrett et al., 2002).

The marker or markers identified during the process of fine‐mapping may

be suitable for direct application in breeding programs following some level

of validation. However, in many cases, these markers may not be polymor-

phic in all breeding populations of interest, thus requiring the identification

of alternative markers for those populations. For well‐characterized gen-

omes, this is straightforward. In rice, for example, any one of the 2414 SSR

markers can be quickly identified from the dense public maps or located

using the genome sequence in online databases. In addition to identifying

markers tightly linked to the gene of interest, it is also useful to identify a

similar set of around 10 markers 3–10 cM either side of the target gene

(Langridge et al., 2001). These markers can then be used to reduce the eVects
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of linkage drag if recombinant selection is practiced (Collard and Mackill,

2007).

An ideal marker for selection of the target gene would be one that provides

100% accurate prediction of the phenotype. Except for the traits in alien gene

introgression regions, this usually requires a marker associated with the

sequence change in the gene associated with the favorable allele. These are

so‐called ‘‘FM’’ (Andersen and Lübberstedt, 2003) or ‘‘perfect markers’’ (see

Section II.B). These markers provide suYcient benefits for MAS application

to justify cloning of important economic genes and QTL aside from the other

benefits that gene discovery can bring (see Section VII.B).
B. QTL MARKER FOR COMPLEX TRAITS

The diYculty for phenotypic selection of many quantitative traits in plant

breeding gave rise to an optimistic view of the prospects of MAS for QTL.

However, to date very few studies have demonstrated the usefulness of marker‐
QTL information vis‐à‐vis conventional phenotypic selection for the develop-

ment of genetically enhanced breeding populations.Many studies reported that

no substantial genetic progress was achieved or only a fraction of putativeQTL

actually contributed to the improvement of the trait when validated through

MAS (Bohn et al., 2001; Bouchez et al., 2002; Flint‐Garcia et al., 2003;

Schneider et al., 1997; Stromberg et al., 1994; Yousef and Juvik, 2001a). Several

factors contribute to false positive (Type I errors) in QTL mapping studies,

including population structure and size, parental selection and genetic back-

ground eVects, epistasis and inaccurate phenotyping, QTL � environment

interaction and inappropriate evaluation conditions, and finally inappropriate

logarithm of odds (LOD) thresholds or low statistical rigor (Beavis, 1998;

Moreau et al., 1998).Additionally, inaccurate phenotyping data in themapping

populations further reduce the capacity to detect real QTL.

In a literature search conducted for the crops under review from 1991 to

2005 in journals with high‐impact factor, over 500 articles reported QTL

contributing to phenotypic variance for several agronomic and seed quality

traits as well resistance to biotic and abiotic stresses, predominantly in cereal

crops such as barley, maize, rice, and wheat. In contrast, during the same

period, there were only 80 articles that dealt with validation of the reported

QTL (Tables XI and XII), concentrating mostly in wheat, barley, rice, maize,

and few in common bean, soybean, pea, yam, and potato. However, the

community has become more concerned about reporting false QTL discovery,

with a resultant increase in the number of reports regarding validation of QTL.

The low resolution of most QTLmapping studies reduces the likelihood of

successful QTL marker validate (Holland, 2004). In a milestone publication

by Beavis (1998), the power, precision, and accuracy of QTL mapping was



Table XI

Validation of Marker/QTL Associated with Resistance to Biotic and Abiotic Stresses in Barley, Common Bean, Maize, Pea, Potato. Rice, Soybean,

Wheat, and Yam

Trait Gene Validated marker/QTL References

Biotic stresses

Barley

Barley leaf scald (Rhynchosporium secalis) Rrs.B87 Closest marker 2.2 cM from the resistance locus

Rrs.B87

Williams et al., 2001

BaMMV and BaYMV ym4 OP‐ZO4H660 Ordon et al., 1995

Barley stripe rust (BSR) (Puccinia

striiformis Westend. f. sp. hordei)

QTL4, QTL5, and

QTL7

QTL4 and QTL5 linked with BSR resistance at

seedling stage; three QTL linked with BSR

resistance at adult plant stage

Castro et al., 2003a,b

BYDV Yd2 YLM Paltridge et al., 1998

BaYMV rym1 and ryn5 A CAPS marker from an RFLP probe MWG2134 Okada et al., 2003a

FHB (Fusarium graminearum Schwabe)

and Kernel discoloration (KD)

Two major QTL (near HVBKasi and the Vrs1 locus);

a major QTL for KD and a QTL for FHB

Canci et al., 2004;

Mesfin et al., 2003

Leaf rust (Puccinia hordei) 13 QTL Six QTL (Rphq1–6) van Berloo et al., 2001

Leaf stripe (Pyrenophora graminea) Rdg2a MWG2018 Arru et al., 2003

Net form of net blotch (NFNB)

[Drechslera teres (Sacc.) Shoem. f. teres

Smedeg]

7–12 QTL EBmac0906 and Bmac0181 Raman et al., 2003

Net type net blotch (NTNB) (Pyrenophora

teres f. teres)

1–6 genes M61P12K116, M55P13T311, Bmag0173, and

Ebmac0874 l

Cakir et al., 2003

Powdery mildew (Erysiphe graminis f. sp.

hordei)

Ml(La) MWG097‐R,L and MWG097 Mohler and Jahoor,

1996

Russian wheat aphid (RWA) [Diuraphis

noxia (Mordvilko)]

Two genes ABG8 and KV1/KV2 Raman and Read, 2000

Spot blotch (SB), NTNB, Septoria

speckled leaf blotch (SSLB), and

leaf scald (LS)

2 QTL each for SB,

NTNB, and SSLB and

one QTL for LS

Rcs‐qtl‐7H‐2‐4 and Rcs‐qtl‐4H‐4‐6 for SB;

Rpt‐qtl‐3H‐4 and Rpt‐qtl‐4H‐5‐7 for NTNB;

Rsp‐qtl‐2H‐7‐11 and Rsp‐qtl‐6H‐10‐14 for SSLB,

and Rrs‐qtl‐1H‐1‐4 for LS

Yun et al., 2006
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Table XI (continued )

Trait Gene Validated marker/QTL References

Common bean

BCMV A dominant gene, I, and

six recessive genes

SW13690 Melotto et al., 1996

CBB (Xanthomonas campestris pv.

Phaseoli)

A major and few minor

genes

R7313 and R4865 Tar’an et al., 1998

bc‐I2 SBD51300 Miklas et al., 2000

Maize

Sorghum downy mildew (SDM)

(Peronosclerospora sorghi) and

Rajasthan downy mildew (RDM)

(Peronosclerospora heteropogoni)

5 QTL Three QTL for SDM and two QTL for RDM, a

major QTL confers resistance to SDM and RDM

Nair et al., 2005

Pea

Ascochyta blight (Mycosphaerella

pinnodes, Phoma medicaginis variety

pinodella, Ascochyta pisi)

Many QTL Six QTL on LG II, III, IV, V, and VI (two QTL) Timmerman‐Vaughan
et al., 2004

Potato

PVY Ny and Ry CD17, GP125, CT168, and TG508 linked with Ryadg Hämäläinen et al., 1997

Rice

Blast [Pyricularia grisea (Cooke) Sacc.] Pi44(t) AFLP348 Chen et al., 1999

Pi‐z MRG5836 Conaway‐Bormans

et al., 2003

Pi‐ta2, Pi‐kh, Pi‐ks, and
Pi‐b

SSRs Pi‐b (RM138, RM166, RM208), Pi‐kh (RM144,

RM224), and Pi‐ta2 (OSM89, RM155, RM7102)

Fjellstrom et al., 2004

Pi‐z SSRs AP5659‐1, AP5659‐3 and AP5659‐5 Fjellstrom et al., 2006

Gall midge (Orseolia oryzae

Wood‐Mason)

Gm2 F10600 and F81700 Nair et al., 1995

Sheath blight (Rhizoctonia solani Kuhn) – Six QTL Pinson et al., 2005

208
S
.
L
.
D
W

IV
E
D
I
E
T
A
L
.



Soybean

Brown stem rot (BSR) (P. gregata) Rbs1, Rbs2, and Rbs3 BSR3.sp1, K375.sp1, 14H13.sp1, 21E22.sp1,

21E22.sp2, 30L19.sp1, 35E22.sp1, 98P22.sp2,

and Satt244

Klos et al., 2000

Root knot nematode [Meloidogyne

incognita (Kofoid and White)

Chitwood]

Few genes Satt012, Satt358, Satt492, and Satt505 Li et al., 2001a

Soybean cyst nematode (SCN) (H. glycines

Ichinohe)

Two major QTL against resistance to SCN race 3 Wang et al., 2001b

rhg1, rhg2, rhg3, rhg4

and rhg5

QTL containing rhg1 on LG G and QTL rhg4 on LG

A2

Concibido et al., 2004

Wheat

Common bunt [Tilletia tritici (Bjrk.) Wint.

and T. laevis Kuhn]

Bt‐10 UBC196590 Demeke et al., 1996

FHB (F. graminearum) Sumai 3‐derived QTL on 3BS and 6BS Anderson et al., 2001

gwm389, gwm493, gwm533, and gwm644 Yang et al., 2003

SSRs linked to the major QTL on chromosome 3BS Zhou et al., 2003b

Hessian fly [Mayetiola destructor (Say)] H1 to H25 OpA01 and OpA17 Dweikat et al., 1994

Leaf rust (Puccinia recondita f. sp. tritici) Lr9 OPA‐071500, OPR15950, and J13/1 þ 2 Schachermayr et al.,

1994

Lr19 Ep‐D1c Winzeler et al., 1995

Lr10 Lrk10–6 Schachermayr et al.,

1997

Lr28 OPJ01378 Naik et al., 1998

Lr28, Lr35, and Lr39 Puc19/HpaII900 Sharp et al., 2001

Lr19 and Lr24 STS Singh et al., 2004

Lr9, Lr10, Lr19, Lr24,

Lr28, Lr29, Lr35, and

Lr39

RFLP and AFLP markers 1100 bp, 310 bp, 130 bp,

310 bp, 850/900 bp, 900 bp, and 100 bp

Blaszczyk et al., 2004

SCS5550 Gupta et al., 2005b
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Table XI (continued )

Trait Gene Validated marker/QTL References

Leaf rust and leaf tip necrosis (LTN) Lr34 and Ltn Major QTL for leaf rust (QLr.sfr‐7DS) and

QLtn.sfr‐7DS for LTN located within the

Xgwm1220‐Xgwm130 interval

Schnurbusch et al., 2004

Powdery mildew [E. graminis DM f. sp.

tritici (Em. Marchal)]

Pm1 and Pm2 Whs350–1,2 Mohler and Jahoor,

1996

Pm1 to Pm25 Xgwm337 Huang et al., 2000

QPm.vt‐1B, QPm.vt‐2A, and QPm.vt‐2B Liu et al., 2001c

Pm1 Xsts638‐7A, XE39M58‐77‐7A, and Xgwm344‐7A Stepien et al., 2004

RWA [(D. noxia (Mordvilko)] Dn4 Xgwm106 and Xgwm337 Arzani et al., 2004

Stem rust (Puccinia graminis) Sr2 gwm533120 Spielmeyer et al., 2003

Stem rust and leaf rust Sr39 and Lr35 Sr39F2/R3900 Gold et al., 1999

Stem rust, leaf rust, and yellow rust Yr17, Lr37, and Sr38 VPM1383, scar15550, and Xgwm636104 Sharp et al., 2001

Yam (Dioscorea spp.)

YMV in white yam (Dioscorea rotundata) Ymv‐1 OPW850 and OPX850 Mignouna et al., 2002b

Anthracnose (Colletotrichum

gloeosporioides) in water yam (Dioscorea

alata)

More than one

dominant gene

OP171700 and OPE6950 Mignouna et al., 2002c

Abiotic stresses

Barley

Aluminum (Al) toxicity Alp Bmag353 Raman et al., 2001

Frost tolerance Fr1 OPA17 and Psr637 Toth et al., 2004

Maize

Abscisic acid (ABA) Major QTL for leaf ABA Landi et al., 2005

Rice

Submergence tolerance Sub1 RM219 and RM464A linked to Sub1 Xu et al., 2004b

Soybean

Salt tolerance Ncl Sat_091 and Sat237 Lee et al., 2004

Wheat

Boron (B) toxicity Bo1, Bo2, and Bo3 Xpsr680‐7B and Xpsr160‐7D JeVeries et al., 2000
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Table XII

Validation of Marker/QTL Associated with Agronomic and/or Seed Quality Traits in Barley, Pea, Rice, Soybean, and Wheat

Trait Gene Validated marker/QTL References

Barley

Agronomic traits (grain yield,

plant height, maturity, and

lodging severity)

Two QTL on chromosome 3 aABG396 and aCDO113 loci on chromosome 3

flanked by aABG057 and aABG37

Larson et al., 1996

Many QTL with small to large

eVects

A QTL on ‘‘plus’’ arm of chromosome 7(5H) Spaner et al., 1999

QTL1 and QTL6 on chromosome 3 and 6,

respectively

Romagosa et al., 1999

Diastatic power (DP) aVecting

malt quality

Nine QTL Xabg057, Bmy1, and XEBmac501 Coventry et al., 2003

Malt extract 25 chromosome regions Two alleles each from chromosome 2H and

2 regions chromosome 5H

Collins et al., 2003

Pea

Lodging Two genes A001 and A004 Warkentin et al., 2004

Rice

Fragrance fgr SCU015RM and RSP04 Christopher et al., 2004

Regeneration ability RZ474 and RZ575 Kwon et al., 2001

Semidwarf stature sd‐1 to sd‐60 sd‐1 linked with RG220 and RG109 Cho et al., 1994

Soybean

Seed weight, protein, and oil

content

Many QTL cqProt‐001 and cqProt‐002 for seed protein;

cqOil‐001, cqOil‐002, and cqOil‐003 for oil

content; cqSd wt‐001 and cqSd wt‐002 for seed

weight

Fasoula et al., 2004

(continued )

A
P
P
L
IE

D
C
R
O
P
G
E
N
O
M
IC

S
211



Table XII (continued )

Trait Gene Validated marker/QTL References

Wheat

Bread‐making quality

(HMW glutenins)

Six genes at Glu‐1 loci on 1A, 1B,

and 1D

A 15 bp in‐frame insertion in Glu‐B1–1d(B‐x6)
discriminate genotypes with good or bad

bread‐making quality

Schwarz et al., 2004

Doughs HMW glutenin subunits 1Dx5 þ
1Dy10 linked with high dough

strength/good bread while 1Dx2

þ 1Dy12 with poor bread quality

Oligonucleotide primers: P1 and P2 (Dx2 and Dx5

alleles), P3 and P4 (Dy10 and Dy12 alleles), and

P5 and P6 (Bx7 allele)

Ahmad, 2000

Flour color QTL on chromosome 7A Xcdo34752 Sharp et al., 2001

Grain protein content (GPC) Six QTL WMC41 and WMC415 Singh et al., 2001b

HMW glutenins Glu‐1 and Glu‐B1 locus Ax2�F2543, Ax2�R3605, Bx7F‐428, Bx7R693,

Bx7F‐572, Bx7R693, Dx5F384, and DxR655

Radovanovic and

Cloutier, 2003

Noodle quality GBSS locus GBSS‐4A null mutation Zhao et al., 1998

null GBSS 4A allele 440 bp from GBSS4A Briney et al., 1998

13 QTL 42 SSRs Prasad et al., 2003

Seed dormancy Major QTL Xhbe03 Torada et al., 2005

Semidwarf Rht‐B1b (Rht1) and Rht‐D1b

(Rht2)

Rht‐B1b and Rht‐D1b Ellis et al., 2002

Storage protein (Gliadines and

glutenins)

Alleles in Gli‐B1 and Glu‐B3 locus

associated with variation in

HMW and LMW, respectively

PCR product of genotypes with LMW‐2 glutenin

has 50‐bp longer fragment than those with

LMW‐1 glutenin

D’Ovidio, 1993
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clearly shown to be highly dependent on sample sizes (n). When populations

of less than 500 individuals are used for QTL mapping (irrespective of

marker density), the power to detect true QTL is low and the estimated

proportion of the genetic variance explained by mapped QTL is overesti-

mated (see below), and it is very unlikely that QTL with small eVects will be
identified.
Number of true QTL
 h2
 Sample size
 Power (%)
 Bias (s2g) (%)
10
 0.30
 100
 9
 þ559
10
 0.30
 500
 57
 þ144
40
 0.30
 100
 3
 þ2104
40
 0.30
 500
 11
 þ423
10
 0.95
 100
 39
 þ197
10
 0.95
 500
 94
 þ106
40
 0.95
 100
 6
 þ690
40
 0.95
 500
 46
 þ165
Bias in the estimated genetic variance occurs mainly due to sampling of

small populations, where the true QTL that are not detected (most of them in

small sample sizes) tend to enhance the apparent eVects of those QTL that

are detected, through what is often referred to as the ‘‘Beavis eVect’’ (Beavis,
1998; Melchinger et al., 1998). Using a large population composed of 976 F5

maize testcross progenies evaluated in 19 environments, Schön et al. (2004)

also detected large eVect of sample size on the power of QTL detection as well

as on the accuracy and precision of QTL detection. The number of detected

QTL and the proportion of genotypic variance explained by QTL generally

increased more with increasing population size than with increasing the

number of test environments, although the average bias of QTL estimates

and their range are reduced by increasing population size and by increasing

the number of test environments. Cross‐validation performed well with

respect to yielding asymptotically unbiased estimates of the genotypic vari-

ance explained by the QTL. However, by increasing the population size from

478 to 976, the increase in the proportion of genetic variance explained by

QTL per additionally tested genotype is smaller as compared to increasing

the population size from 244 to 488. This diminishing returns relationship (as

the population size is increased) is expected due to the nonlinear relationship

between sample size and power of QTL detection beyond a certain threshold

(Lynch and Walsh, 1998). Genetic factors, such as enzyme variation in

metabolic pathways, lead to an L‐shaped distribution of QTL eVects for a
given quantitative trait (Bost et al., 2001). For example, this trend was

reported for grain moisture in maize with the result that the distribution

was skewed toward smaller values (L‐shaped) (Schön et al., 2004).
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Care should also be taken to report QTL‐trait associations only at higher

significance thresholds to avoid false identification of QTL when in fact a

QTL is not present (Type I error). For example, Bernardo (2004) suggested

that to prevent false QTL from confusing the literature and databases, a

detected QTL should, in general, be reported as a QTL only if it is identified

at a stringent significance level (Type I error probability or ac ¼ 0.0001).

Increasing the size of the mapping population leads to both increased power

(Beavis, 1998) and a lower rate of false‐positive QTL. However, the breeders

in general like to work on many populations with small sample size rather

than concentrating on few populations with large sample size. This trend

needs to be reversed in order to exploit the QTL information in crop breeding

programs or otherwise to deploy statistical methods for combining QTL

analysis from related populations. Also more eVorts should be directed

toward accurate evaluation of progenies (both at the genotypic and pheno-

typic level) in order to avoid application failures. Benjamini and Yekutieli

(2005) suggested using a false discovery rate (FDR) estimate in QTL analysis.

The FDR is the expected proportion of Type I errors. FDR‐controlling
procedures ensure reproducible results with few false positives and oVering
increased power of QTL discovery. The two advantages of the FDR

approach, which make it particularly suitable for QTL analysis, are its

flexibility regarding the amount of information in the data and its scalability.

Controlling the FDR for multiple traits may result in no loss of power to

detect QTL. However, a renewed optimism regarding QTL mapping has

emerged based on analysis of cloned QTL, which indicates that the original

low‐density map positions are relatively accurate (Price, 2006). Clearly,

marker validation should be carried out after initial QTL mapping in order

to determine whether fine‐mapping is required.

When traits are controlled by multiple QTL of small eVect, the confidence
intervals for their location are wide (Visscher et al., 1996). For these QTL,

flanking markers may be widely spaced (>20 cM) and a large chromosomal

fragment will be transferred duringMAS. Thus, QTL of relatively large eVect
are the most appropriate targets for MAS. These QTL are easier to validate,

are more likely to be eVective in diVerent genetic backgrounds, and less likely

to suVer from confounding linkage drag problems during MAS (Holland,

2004; Mackill, 2006). They are also easier to fine‐map, a process which

requires accurate diVerentiation between the phenotypes resulting from the

two alleles of the QTL. QTL of large eVect may also be readily detected even

in populations of smaller size (Vales et al., 2005).

The genetic background of parental genotypes of the mapping population

has a profound eVect on the number, location, and eVects of the identified

QTL. For example, if a QTL allele with beneficial eVect is identified in

population A, its introgression by means of MAS in population B will not

necessarily lead to tangible benefits. This is because population B may
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already have alleles of similar or even greater value at this QTL and/or

because of diVerent interactions between the QTL and the two genetic back-

grounds. Campos et al. (2004) estimated that most drought‐tolerant QTL

detected in maize would have limited utility for applied breeding, partially

due to the prevalence of genetic background and environment eVects.
Use of MAS for transferring QTL is more suitable when a trait is being

introduced from an exotic source into elite germplasm, thus ensuring higher

levels of polymorphism and higher probability of expression of the gene/QTL

in the new genetic background (i.e., more likely that the allele is diVerent to
the recipient). A mapping study involving an exotic donor crossed with an

elite line lacking the trait will increase the chance that the identified markers

will be useful in the targeted cultivars. Large‐eVect QTL are also more likely

to be expressed in diVerent genetic backgrounds. For traits controlled by

smaller QTL, the eVect of the background can be extreme. However, it is

currently impossible to predict these interaction eVects in most crops, thus

field evaluation must be used to validate the expression of introgressed QTL.

Epistasis, as detected by identification of diVerent QTL when the same

donor is crossed to diVerent parents, is often observed. In Arabidopsis,

significant eVects of epistasis were observed for two QTL found in a 210‐kb
interval controlling growth rate, with gene eVects depending on genetic

background (Kroymann and Mitchell‐Olds, 2005). Li et al. (2006a) provided

an example of complex interactions among QTL for partial resistance to

bacterial blight (BB) in rice, and it is suggested that this results from genetic

networks of the underlying genes. Clearly, even for QTL that are observed in

multiple populations, their robustness for applications in breeding must still

be validated in relevant populations. Development of reciprocal introgres-

sion lines is useful for estimating the eVects of the genetic background. For
many traits, the overlap of QTL detected in reciprocal genetic backgrounds is

low, showing the large eVect of background on trait expression.

QTL � E eVects are another factor that must be considered during valida-

tion studies. There are many reports of the lack of consistency between QTL

detected in diVerent environments. For examples, when Paterson et al. (1991)

evaluated F2 and F2:3 progenies in 3 environments, they detected 29 putative

QTL distributed over 11 of the 12 chromosomes, accounting for 4.7–42% of

the phenotypic variation for fruit size, soluble solids concentration, and pH in

tomato. Of these, 4 were detected in all the 3 environments, 10 in 2 environ-

ments, and 15 only in a single environment. QTLmapping using the same rice

population for analysis of seedling vigor revealed major diVerences for QTL

detected at diVerent temperature regimes (Redoña and Mackill, 1996).

Experiments conducted with the same mapping population in nine environ-

ments showed that rice QTL detection for plant height and heading date was

markedly aVected by environment (Li et al., 2003a). Drought stress at flower-

ing adversely aVects grain yield in maize that causes a delay in silking, an

increase in anthesis silking interval (ASI), thus decrease in grain yield. Vargas
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et al. (2006) identified QTL for ASI that are stable across the eight environ-

ments and corresponded well with those reported by Ribaut et al. (1996). For

grain yield, Vargas et al. (2006) detected a much larger GEI than for ASI;

however, a couple of QTL consistent across environments identified, thus

confirming the previous report of the QTL for grain yield and yield compo-

nents on chromosomes 1 and 10 (Ribaut et al., 1997a).

Cross‐validation of QTL in independent samples and in diVerent genetic
backgrounds and environments is necessary to obtain unbiased estimates of

QTL eVects and the proportion of the genetic variance explained by the

detected marker‐QTL association before using them in MAS breeding pro-

grams. In general, QTL detected in multiple mapping studies using diVerent
populations would be considered as the most important targets for MAS

application. For example, a grain length and weight QTL near the centromere

of rice chromosome 3 was identified in at least eight independent mapping

studies and has been identified as a putative transmembrane protein (Fan

et al., 2006).

In some cases,mapping theQTL inmultiple generations from the same cross

can be used to confirm the presence of QTL, as was observed for sheath blight

in a riceRIL population (Pinson et al., 2005). Similarly, an advanced backcross

population (BC2F6:8) validated all QTL for resistance to Septoria speckled leaf

blotch of barley that had been identified in an RIL population with the same

parents (Yun et al., 2006). QTL detected in a rice RIL population were

validated in NIL developed for the two major plant‐type QTL (Kobayashi

et al., 2006). However, usually it is only the successful validations that are

reported in the literature. A rare exception to this is Steele et al. (2006) who

attempted to validate four root QTL during the three backcrosses aimed at

transferring root QTL from the upland rice cultivar Azucena into the variety

Kalinga III. While all four root QTL were successfully introduced, only one

showed a significant eVect when transferred into the Kalinga III background.

Where recurrent selection is used in breeding programs,QTL eVects can change
over time in subsequent selection cycles. This led to the development of the

‘‘Mapping As You Go’’ (MAYG) approach (Podlich et al., 2004), where QTL

eVects are estimated in each cycle before selection and intermating are

performed.

Fine‐mapping of QTL is very useful for identifying tightly linked markers

that will not suVer from loss of linkage due to recombination between marker

and QTL during applications in diVerent breeding populations. This will also
serve to minimize the size of the introgressed fragment during backcrossing.

Few QTL with major eVects on traits of agricultural importance have been

fine‐mapped and successfully delimited their position on the chromosome in

tomato, rice, wheat, and maize (see Section VII.B).
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IV. SUCCESSFUL APPLICATIONS OF
MARKER‐ASSISTED GENETIC ENHANCEMENT IN

PUBLIC SECTOR BREEDING PROGRAMS
MAS is most useful for traits where phenotypic evaluation is expensive or

diYcult, particularly for those polygenic traits with low heritability that are

highly aVected by the environment. It is also useful to break linkages between

the target traits and undesirable genes in so‐called marker‐accelerated back-

cross breeding. MAS may also oVer the opportunity to address goals not

possible through conventional breeding, such as pyramiding diVerent sources
of disease resistance that have similar phenotypes. Indirect selection based on

marker genotype rather than phenotype can be used to accelerate the speed

and increase the precision of genetic progress, reduce the number of genera-

tions, and when integrated into optimized molecular breeding strategies, it

can also lower the costs of selection. The eYciency of MAS depends on many

factors associated with how the underlying marker‐trait associations were

identified, including the size of the mapping population, the nature of the

phenotyping, the design and analysis of the experiment, the number of

markers used, the distance between marker loci, the genomic region contain-

ing the desired QTL, and the proportion of additive genetic variance

explained by the marker, the selection method, and the experimental design

(Dwivedi et al., 2005 and references therein). The eYciency of MAS also

depends on many factors associated with its application, including the crop

and breeding system, the molecular breeding process, and the nature of the

genotyping pipeline. In this section, we briefly summarize the cases where

MAS has been used to incorporate beneficial traits into improved genetic

backgrounds of major food crops.
A. RESISTANCE TO BIOTIC STRESSES

1. Single Gene Introgression

a. Cereals. MAS coupled with backcross and pedigree breeding meth-

ods and field evaluation has led reports in the literature of genetic enhance-

ment for resistance to bacterial blight (BB) (Xa21), gall midge (Gm‐6t), and
brown plant hopper (BPH) (Bph1 and Bph2) in rice; to leaf rust (Lr19, Lr51,

and Yr15 ) in wheat; to yellow dwarf virus (Yd2), stripe rust (Yr4 ), and

powdery mildew (mlo‐9) in barley; and to downy mildew (major QTL) in

pearl millet (Table XIII). The progenies showed same resistance level as the

donor parental lines both in greenhouse and field evaluations.



Table XIII

Examples of Single Gene Transfer for Resistance to Biotic Stresses Using Marker‐Assisted Selection in Barley, Common Bean, Maize, Pearl Millet, Potato,

Rice, Soybean, and Wheat

Gene Breeding scheme Marker Marker‐assisted product References

Barley

Barley yellow dwarf virus

Yd2 Two backcrosses YLM Lines with Yd2 had few leaf

symptoms but no adverse eVect

on agronomic traits

JeVeries et al., 2003

Powdery mildew [Blumeria graminis f. sp. hordei (Bgh.)]

mlo9 Double‐haploid breeding SNPs DHLs carrying mlo9mlo9

completely resistant to

powdery mildew

Paris et al., 2003

Stripe rust (P. striiformis f. sp. hordei)

Yr4 Double‐haploids from
BC1F1

RFLPs DHLs carrying Yr4 less

susceptible to stripe rust

Toojinda et al., 1998

Common bean

Comman bacterial blight (CBB) [Xanthomonas campestris pv. phaseoli (Xcp)]

Quantitative Pedigree breeding BC420900 and C7900 Marker‐based selected RILs

resistant to CBB

Yu et al., 2000

Maize

Southwestern corn borer (SWCB) (Diatraea grandiosella Dyar)

6–9 QTL Two backcrosses 89 RFLPs and a morphological

marker, grain color (y1)

Progenies with improved

resistance to SWCB leaf

feeding damage selected

Willcox et al., 2002

Pearl millet

Downey mildew (Sclerospora graminicola)

Major gene Backcross breeding Xpsm464, Xpsm716, Xpsm265, and

Xpsm416

HHB 67‐2 with improved downy

mildew resistance

Hash, 2005
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Potato

Late blight [P. infestans (Mont.) de Bary]

RB Two backcrosses RGA1/rga1, RGA2/rga2, RGA3/rga3,

and RGA4/rga4

Several marker‐positive breeding
lines showed resistance to late

blight

Colton et al., 2006

Rice

Bacterial blight (BB) [Xanthomonas oryzae pv. Oryzae (Xoo)]

Xa21 Three backcrosses PCR‐based markers close to Xa21, and

128 RFLPs

Lines with high yield and BB

resistance selected

Chen et al., 2000

Xa21 Three backcrosses 21, C189, and AB9 for foreground and

AFLPs for background selections

6078(Xa21) performed well under

heavy disease pressure

Chen et al., 2001

Gall midge (Orseolia oryzae)

Gm‐6t Pedigree breeding RAPD and STS Gm‐6t successfully transferred to

hybrid rice parents

Katiyar and Bennett, 2001

Soybean

Soybean cyst nematode (H. glycines Ichinohe)

Quantitative Pedigree breeding 98 RFLPs MAS‐selected lines comparable

to phenotypic selection

Concibido et al., 1996

Wheat

Leaf rust (Puccinia triticina)

Lr19 Pedigree breeding Ep‐D1c Families with Ep‐D1c allele

resistant to leaf rust

Slikova et al., 2003

Lr51 Six backcrosses XAga7 and Xmwg710 Lr51 transferred into three

cultivars

Helguera et al., 2005

Yr15 Two backcrosses 1000 SSRs Yr15 transferred into Zak http://wheatlifemagzine.

com/0105/pg68_0105.pdf
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b. Legumes. In contrast to the cereals, there are very few reports in the

literature of success stories for single gene transfer by MAS in legumes, and

only in two crops: soybean and common bean. However, this is proportional

to the relative stage of development of genomics in these crops and the

number of trait mapping studies that has been completed. Loci for resistance

to common bacterial blight in common bean and cyst nematode in soybean

have been transferred into improved breeding lines using MAS (Table XIII).

c. Roots and Tubers. Late blight is the most devastating disease in

potato and has received much research attention across the world

(Ojiambo et al., 2000). However, resistance breeding has been a challenge

because of the short period during which race‐specific resistance genes re-

main eVective, while breeding for ‘‘horizontal’’ or race‐nonspecific resistance
has achieved only moderate successes. Solanum bulbocastanum (2n ¼ 24), a

diploid species native to Mexico, has been characterized as possessing dura-

ble resistance to all known races of late blight (van Soest et al., 1984), and

mapped to a single locus on chromosome 8 (Naess et al., 2000). Using PCR‐
based DNA markers for tracking the RB gene in breeding populations,

several marker‐positive selected lines showed resistance to late blight

(Table XIII). RB has also been cloned and transformed into Katahdin, a

highly susceptible potato cultivar. The Katahdin‐transformed plants with

RB showed broad‐spectrum resistance against a wide range of late blight

isolates (Lozoya‐Saldana et al., 2005; Song et al., 2003). Clearly, by having

the full sequence of the target gene, it should be possible to develop a highly

eYcient low‐cost assay system for this trait.
2. Gene Pyramiding

Gene pyramiding is a useful approach to the durability or level of pest and

disease resistances, or to increase the level of abiotic stress tolerance. Genes

controlling resistance to diVerent races or biotypes of a pest or pathogen and

genes contributing to agronomic or seed quality traits can be pyramided

together to maximize the benefit of MAS through simultaneous improvement

of several traits in an improved genetic background.

a. Cereals. Many major genes (recessive or dominant) and QTL con-

ferring resistance to pests and diseases have reported in major cereals. Using

MAS coupled with field evaluation, researchers were able to combine multiple

resistances to these pests and diseases inmany cereal crops. Successful examples

include improved pyramided lines and cultivars containing gene combinations

for bacterial blight (BB) (xa3, xa4, xa5, xa7, Xa10, xa13, Xa21, and Om);

blast (Bl) (Pi1, Piz‐5, and Pita); brown plant hopper (BPH) (Bph1 and Bph2);
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Bl (Piz‐5) and BB (Xa21); BB (Xa21) and yellow stem borer (YSB) (Bt); BB

(Xa21), YSB (Bt), and sheath blight (ShB) (RC7 chitinase); and BB (Xa21 and

Xa7), YSB (Bt), Bl (Pi1, Pi2, and Pi3), and BPH (Qbph1 and QBph2) in rice

(Table XIV). In wheat, powdery mildew (Pm2, Pm4a, Pm6, Pm8, and Pm21)

pyramided lines and those with resistance to Fusarium head blight (FHB) (six

QTL), orange blossom midge (Sm1), and leaf rust (Lr21) were bred through

MAS. Resistance to Barley mild mosaic virus (BaMMV) and Barley yellow

mosaic virus (BaYMVandBaYMV‐2) complex (rym4, rym5, rym9, and rym11)

and stripe rust (QTL: 1H, 4H, and 5H or their combination: 1H and 4H, 1H

and 5H, 4H and 5H, or 1H, 4H, and 5H) has been separately incorporated

through MAS in barley. Many of these pyramided lines showed enhanced

resistance to pests and diseases, some even outyielded the controls under high

disease or pest pressure in field conditions (Table XIV).

b. Legumes. Reports of gene pyramiding in legumes include combining

QTL for resistance to corn earworm and Pseudoplusia includens (soybean

looper) with cry1Ac resistance in soybean; while resistances to rust and

anthracnose (QTL) or to CBB, Bean common mosaic virus (BCMV), and

anthracnose have been combined in common bean (Table XIV). The pyra-

mided lines in soybean showed improved resistance to defoliators, while

common bean lines showed multiple resistances to these diseases.

c. Roots and Tubers. A single dominant gene for extreme resistance to

Potato virus Y (PVY, genus Potyvirus), Ryadg, was mapped to a distal position

on potato chromosome 11 (Hämäläinen et al., 1997). ForPotato virus X (PVX,

genus Potexvirus), dominant genes, Rx1 and Rx2, were mapped to potato

chromosomes 12 and 5, respectively (Ritter et al., 1991). The dominant gene

Gro1 for resistance to all known pathotypes of the root cyst nematode (Globo-

dera rostochiensis) was mapped to potato chromosome 7 (Barone et al., 1990).

A single dominant gene Sen1 for resistance to potato wart (Synchytrium

endobioticum) pathotype 1 was mapped to a similar position on potato

chromosome 11 as the Ryadg (Hehl et al., 1999). Using four PCR‐based
diagnostic assays, tetraploid progeny from tetraploid–diploid crosses com-

bining the Ryadg for extreme resistance to PVY with Gro1 for nematode

resistance and with Rx1 for extreme resistance to PVX, or with Sen1 for

wart resistance were selected (Table XIV).
B. TOLERANCE TO ABIOTIC STRESSES

1. Drought Tolerance

Rice: selection for a well‐developed root system with long thick roots

should improve the drought tolerance of upland rice because the plant

would avoid water stress by absorbing water stored in the deep soil layers



Table XIV

Examples of Gene Pyramiding for Resistance to Biotic Stresses Using MAS in Barley, Common Bean, Potato, Rice, Soybean, and Wheat

Gene Breeding scheme Marker Marker‐assisted product References

Barley

BaYMV‐I, BaYMV‐II, and BaYMV‐III; BaMMV‐Ka1 and Na1

rym1 One backcross RFLPs Mokkei 01530 with rym1 resistant to

BaYMV‐1 and BaYMV‐II, and
similar in malt quality as of

Haruna Nijo

Okada et al., 2003b

rym4, rym5, rym9, and

rym11

Simple and complex

crosses using

double‐haploids

RAPDs and SSRs DHLs carrying rym4, rym9, and

rym11 and those with rym5, rym9,

and rym11 selected

Werner et al., 2005

Barley stripe rust

QTL (1H, 4H, and 5H) Backcross‐derived ILs SSRs ILs in susceptible genetic background

carrying 1H, 4H, or 5H

individually or in combinations

were resistant to barley stripe rust

Richardson et al., 2006

Common bean

Common bacterial blight (CBB), BCMV, and anthracnose

Several loci for BCMV and

anthracnose

Complex crossing and

pedigree breeding

UBC420, BC73, SW13‐I,
and Co‐42

Marker‐based selected progenies

resistant to CBB, BCM, and

anthracnose

http://www.

Ontariobeans.on.ca/

liu5thcapsulem

sapaperfinal.pdf

Rust (Uromyces appendiculatus) and anthracnose (Colletotrichum lindemuthianum)

Nine major genes each for

rust and anthracnose

Three backcrosses RAPDs Lines combining resistance to rust

and anthracnose developed

Faleiro et al., 2004

222
S
.
L
.
D
W

IV
E
D
I
E
T
A
L
.

http://www.Ontariobeans.on.ca/liu5thcapsulemsapaperfinal.pdf
http://www.Ontariobeans.on.ca/liu5thcapsulemsapaperfinal.pdf
http://www.Ontariobeans.on.ca/liu5thcapsulemsapaperfinal.pdf
http://www.Ontariobeans.on.ca/liu5thcapsulemsapaperfinal.pdf


Potato

Potato virus Y (PVY), Potato virus X (PVX), nematode, and wart (S. endobioticum)

Ryadg(PVY), Rx1 (PVX),

Gro1 (nematode), and

Sen1 (wart)

F1 hybrids (2 � 4 cross) RYSC3 (Ryadg), Gro1–4

(Gro1), CP60 (Rx1), and

N125 (Sen1)

Marker‐based selection of tetraploid

potato clones showed multiple

resistance to four diseases, all with

monogenic resistance

Gebhardt et al., 2006

Rice

Bacterial blight (BB)

Xa3, Xa4, xa5, and Xa10 Pedigree breeding RZ390, RG556, RG207,

XNpb181, and Oo72000

Lines carrying multiple genes

provided broader spectra of

resistance to BB

Yoshimura et al., 1995

Xa4, xa5, xa13, and Xa21 Pedigree breeding Npb181, Npb78, RG103,

RG136, RG556, RZ28,

RZ207, pTA248, and

pTA818

Pyramided lines showed broader

spectrum of resistance to BB

Huang et al., 1997

xa5, xa13, and Xa21 Three backcrosses RG556, RG207, RG136,

and pTA248

Lines with Xa21 had increased

resistance than xa5, xa13, or both

Sanchez et al., 2000

Two backcrosses RG556, RG136, and

pTA248

Lines with gene combinations

provided broader spectrum of

resistance to BB

Singh et al., 2001a

xa5, xa13, and Xa21 Pedigree breeding pTA248, RG136, and

RM122

Lines carrying multiple genes showed

greater resistance than those with

single gene(s)

Swamy et al., 2004

xa5, xa7, Xa21, and Om Three backcrosses RG556a (xa5), OPL13

(Om), pTAta258 (Xa21),

and 10 RAPD markers

Angke (xa5) and Conder (xa7)

released, and few other lines

combining yield and resistance in

advance trials in Indonesia

http://www.isuagcenter.

com/inst/research/

stations/rice/

proceedings.pdf

(continued )
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Table XIV (continued )

Gene Breeding scheme Marker Marker‐assisted product References

BB, leaf folders, yellow stem borer (YSB) (Scirpophaga incertulas)

Xa21 and Bt Pedigree breeding 21, 248, C189, AB9 forXa21

and pFHBT1(1.8 kb) for

Bt

Minghui63 containing Bt and Xa21

and its hybrids showed multiple

resistance and produced two to

three times more grain yield under

natural infestation

Jiang et al., 2004

BB, stem borer (SB), blast, and BPH

Xa21 andXa7 (BB); Bt (SB);

Pi1, Pi2, Pi3 (blast); and

Qbph1 and Qbph2 (BPH)

Pedigree breeding AFLP 1415, STS P3, M5,

248, RM144, RM224,

and Pi2

Minghui 63(Xa21 and Xa7) showed

broader resistance to BB; Minghui

63(Xa21 and Bt) showed combined

resistance to BB and SB;

Zhenshan97(Qbph1 and Qbph2)

showed better resistance to BPH

Yuqing et al., 2004

BB, YSB, sheath blight (ShB) (R. solani)

Xa21, Bt, and RC7 chitinase

(Shb)

Pedigree breeding Pc822 (Xa21), Bt, and RC7

chitinase

Lines carrying three genes were

resistant to BB, YSB, and ShB

Datta et al., 2002

Blast (Bl) [Magnaporthae grisea (Herbert) Borr. (ananmorphe Pyricularia oryza Cav.)

Pi1, Piz‐5, and Pita Pedigree breeding Npb181, RZ536, RZ64,

RZ612, RG456, RG64‐
SAP, RG869, RZ397, and

RG241

The pyramided lines showed better

resistance to blast

Hittalmani et al., 2000

Bl and BB

Piz‐5 and Xa21 Four backcrosses (Piz‐5)
and transgenic (Xa21)

RG64750 (Piz‐5) and 1.4‐kb
fragment (Xa21)

Lines showed combined resistance to

Bl and BB

Narayanan et al., 2002

Piz‐1and Piz‐5 (blast) and

Xa21 (BB)

Pedigree breeding RZ536 and r10 (blast) and

Xa21 (1.4‐kb fragment of

pC822)

The pyramids showed enhanced

resistance to blast and BB

Narayanan et al., 2004
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Brown plant hopper (BPH) (Nilaparvata lugens Stal) (Bph1 and Bph2)

Several major genes and

QTL

Pedigree breeding em24G, EM5814N, em32G,

KPM1, KPM2, KPM3,

KPM4,KPM5, andKPM8

Pyramided lines showed similar

resistance as to those with single

gene

Sharma et al., 2004

Rice yellow mottle virus (RYMV)

Many QTL Three backcrosses RG869 and BNL 16–06 for

foreground and RFLPs

and SSRs for background

selections

Lines containing QTL 12 and QTL 7

alleles showed partial resistance to

RYMV

Ahmadi et al., 2001

Soybean

Corn earworm (CEW) (Helicoverpa zea Boddie)

QTL and Bt (cry1Ac) Three backcrosses Nine SSRs The pyramid lines had a detrimental

eVect on larval weights and on

defoliation by CEB

Walker et al., 2002

CEW and soybean looper (SBL) (P. includens)

cry1Ac and QTL (PI

229358)

Two backcrosses Six SSRs and sequence‐
specific primers cry1Ac

Lines carrying cry1Ac and QTL

alleles resistant to three

lepidopteran pests

Walker et al., 2004

Wheat

Fusarium head blight (FHB) (F. graminearum), orange blossom midge (Sitodiplosis mosellana), and leaf rust (Lr21)

Six FHB QTL, Sm1 for

midge and Lr21 for leaf

rust

Two backcrosses gwm533, gwm493, and

wmc808

Resistant progenies containing

chromosome segments FHB, Sm1

and Lr21 identified

Somers et al., 2005

Powdery mildew (E. graminis DC. F. tritici Em. Marchal)

Pm2, Pm4a, and Pm21 Pedigree breeding Xbcd1871‐5D‐EcoRV,

Xwhs350‐5D‐EcoRV,

Xbcd1231‐2A‐EcoRI,

pHv62, and psr113

Gene combinations (Pm2 þ Pm4a,

Pm2 þ Pm21, and Pm4a þ Pm21)

integrated into Yang158 that

showed resistance to powdery

mildew

Liu et al., 2000b

Pm2, Pm4a, Pm6, Pm8,

and Pm21

Pedigree breeding RAPD and SCAR markers Lines with Pm2 and Pm4a immune to

powdery mildew

Wang et al., 2001a
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(Yoshida and Hasegawa, 1982). However, phenotypic selection for root mor-

phological traits in conventional breeding is not feasible. The tropical japonica

rice cultivars are reported to have thicker and deeper roots than indica cultivars

(Courtois et al., 1996). Using four QTL (QTL2, QTL7, QTL9, and QTL11)

from Azucena (a japonica cultivar), which each contributing between 5% and

30% phenotypic variance for root traits (root length and thickness), Steele et al.

(2006) initiated marker‐assisted backcrossing (MABC) to improve drought

tolerance into Kalinga III, an upland indica cultivar. After five backcrosses

and conducting over 3000 marker assays (2548 RFLPs and 700 SSRs) on 323

plants, the NILs were developed and evaluated for root traits. The target

segment on chromosome 9 (RM242‐RM201) significantly increased root

length under both irrigated and drought stress environments. Azucena alleles

at the locus RM248 (below the target root QTL on chromosome 7) delayed

flowering. However, selection for the recurrent parent allele at this locus

produced early flowering NILs that are suited to upland environments in

eastern India. Other target regions had no significant eVects on root length in

Kalinga III genetic background. In a similar study, Shen et al. (2001) also

demonstrated the eVectiveness of MAS to transfer QTL from three of the four

target regions (chromosomes 1, 2, 7, and 9) associated with root traits (root

length and root mass) from Azucena to NIL in IR64 genetic background. NIL

carrying the QTL from chromosomes 1, 7, and 9 had shown significantly

improved root traits over IR64, while none of the NIL containing QTL from

chromosome 2 had root phenotype significantly diVerent from that of IR64. In

both the studies, progenies containing QTL from chromosome 7 confer im-

proved root characteristics that are now being tested under field conditions to

assess their performance under water‐limited conditions.

Maize: Anthesis silking interval (ASI) is an important trait associated

with drought tolerance in maize. Ribaut et al. (1996, 1997b) initiated a

major marker‐assisted breeding program to transfer five genomic regions

involved in the expression of a short ASI from Ac7643 (a drought‐tolerant
line) to CML247 (an elite tropical breeding line). Five genomic regions were

transferred using flanking PCR‐based markers. Seventy of the best BC2F3

(i.e., S2 lines) lines were crossed with two testers, CML254 and CML 274.

These hybrids and the BC2F4 families derived from selected BC2F3 plants

were evaluated for 3 years under drought stress conditions. Results show that

stress conditions induced a yield reduction of at least 80%, but the mean of

the 70 selected genotypes performed better than the control (all evaluated as

testcross products). In addition, the best genotypes among 70 selected

(BC2F3 � testers) performed two to four times better than the control.

However, this diVerence became less marked when the intensity of stress

decreased: for a stress inducing less than 40% yield reduction, performance of

testcross hybrids resulting from MAS was no better than the ‘‘original’’

version of CML274.
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Pearl millet: a major QTL on LG2 is associated with increased grain yield

and harvest index under terminal stress in PRLT 2/89‐33 (Yadav et al., 2002).

PRLT 2/89‐33 is a drought‐tolerant, low‐tillering, and large‐panicle landrace
from West Africa (Andrews and Anand Kumar, 1996). In contrast, H77/833‐2
is a drought‐sensitive, high‐tillering, and small‐panicle landrace from India

(Kapoor et al., 1989). The performance of QTL MAS‐derived topcross

hybrids (TCH) was compared with that of field‐based TCH. Progenies with

the best overall ability to maintain under terminal stress environments were

used to generate the TCH, and these were compared with randomly mated

TCH made from randomly selected progenies from the entire population

(irrespective of performance under terminal drought stress). In both the

cases, progenies were selected irrespecitve of the presence or absence of

favorable alleles at the putative drought‐tolerant QTL and evaluated across

21 environments (nonstress, terminal stress, and gradient stress). The QTL

MAS‐derived hybrids were significantly, but only modestly, higher yielding

both in full and partial terminal stress environments.However, this advantage

under stress was at the cost of lower yield of the same hybrids under non-

stressed environments. The QTL MAS‐derived hybrids flowered earlier and

had limited eVective basal tillers, low biomass, and high harvest index.

All these traits are similar to that of the drought‐tolerant parent PRLT‐2/
89‐33, thus confirming the eVectiveness of the putative drought‐tolerant QTL

on LG2 (Bidinger et al., 2005). A number of marker‐assisted backcross

progenies have been generated from the cross between H77/833‐2 (drought

sensitive) and PRLT 2/89‐33 (LG2 drought‐tolerant QTL). Initial results

indicate that it has been possible to improve grain yield under terminal stress

in these lines without a biomass penalty under stress conditions or a grain

yield penalty under well‐watered conditions (Hash et al., 2004).

Common bean: Schneider et al. (1997) identified four to five RAPD mar-

kers in two mapping populations that were consistently and significantly

associated with yield under stress, yield under optimum irrigation, and

geometric mean yield across a broad range of environments. To examine

the eVectiveness of these markers, they selected genotypes from either

extremes and evaluated them in three locations. MAS in the Sierra/AC1028

population was eVective in Michigan under severe stress but ineVective in

Mexico under moderate stress. The Sierra/Lef‐2RB population showed

improved performance by 11% in stress and 8% in nonstress environments.
2. Submergence Tolerance

In many parts of the lowlands of south, southeast, and eastern Asia, rice

cropping during the rainy season is completely submerged for varying peri-

ods of time, resulting in substantial losses to rice production in these regions.
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Genetic variation for submergence tolerance has been reported in rice, for

example, FR13A, a landrace from India, can survive up to 2 weeks of complete

submergence owing to a major QTL, submergence 1 (Sub1) on chromosome 9

(Xu and Mackill, 1996; Xu et al., 2000). Further, Xu et al. (2006) identified a

cluster of three genes related to the ethylene‐response‐factor (ERF) at the Sub1

locus. A variant of Sub1A‐1 is found only in submergence‐tolerant rice,

FR13A. Overexpression of Sub1A‐1 in submergence‐intolerant O. sativa

ssp. japonica (cultivar Liaogeng) conferred enhanced tolerance. The same

research group used marker‐assisted backcross breeding to introgress the

Sub1A‐1 gene into a widely grown Indian cultivar, Swarna. The introgressed

progenies showed strong submergence tolerance and maintained high yield

and other agronomic properties of the recurrent parent, Swarna. Submer-

gence tolerance has also been introduced into a Thai Jasmine rice,

KDML105 following marker‐assisted breeding (Siangliw et al., 2003).
C. AGRONOMIC AND SEED QUALITY TRAITS

Many agronomic or seed quality traits are conferred by QTL each with

varying contributions and diVerent interaction with each other (epistasis)

and the environment thus greatly complicating cultivar development. Unlike

many success stories of pests and disease‐resistance transfer byMAS in many

crops, there are few reports of successful transfer of beneficial alleles asso-

ciated with improved yield or seed quality traits into improved genetic

background. The foremost among them include yield‐enhancing QTL alleles

from wild relatives of rice and soybean and grain quality in rice, wheat, and

maize, and malt quality in barley.

Rice: Using marker‐assisted backcross breeding, the two yield‐enhancing
QTL alleles, yld1.1 and yld2.1 from wild rice Oryza rufipogon, have been

successfully transferred into an improved agronomic background, whose

progenies out‐yield the controls by 24–42%. Most of this improvement was

accounted for by increases in two yield components: grains per panicle and

1000‐grain weight (Liang et al., 2004). In another marker‐assisted backcross

breeding program, Yue‐guang et al. (2004) selected progenies in BC3 genera-

tion that produced more than 30% greater grain yield over Minghui 63, a

restorer line of the many commercially grown hybrids in China.

Grain quality represents a major problem, particularly in hybrid rice

which are now commercially grown in substantial acreage worldwide.

The most serious grain quality problems in hybrid rice are eating and

cooking qualities, and to some extent milling quality. Both eating

and cooking qualities are largely determined by three characters, specific to

the physical and chemical properties of the starch in the endosperm, that is,
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amylose content (AC) (Juliano, 1985; Webb, 1980), gel consistency (GC)

(Cagampang et al., 1973), and gelatinization temperature (GT) (Little et al.,

1958). The chalkiness, or opacity, of the endosperm of the grains is another

important grain quality trait that not only aVects the appearance of the

grains but also the resistance to grain breakage during milling. Medium

AC/soft GC/high GT together with a translucent endosperm represent

good grain quality, while high AC/hard GC/low GT together with chalky

endosperm represent poor grain quality (Tan et al., 1999, 2000).

Shanyou 63, a hybrid between the male‐sterile line Zhenshan 97A and the

restorer line Minghui 63, was the most widely grown hybrid rice in the 1990s,

accounting for �25% of the rice production in China (Lin and Min, 1991).

However, in recent years, the area declined as this hybrid became susceptible

to bacterial blight and because of greater consumer awareness about its

relatively poor cooking and eating qualities. AC, GC, and GT cosegregate

and are controlled by the waxy locus and other genes tightly linked to this

locus (Tan et al., 1999). It should be, therefore, possible to simultaneously

improve all three traits. Chalkiness, or opacity, of the grains is controlled by

6 QTL located on 5 of the 12 rice chromosomes (Tan et al., 2000). Using

MAS in three generations of backcrossing followed by one generation of

selfing, Zhou et al. (2003a) successfully introduced the wx‐MH fragment

from Minghui 63 into Zhenshan 97B, which was subsequently transferred

to Zhenshan 97A. The improved version of the male‐sterile and maintainer

lines, Zhenshan 97A (wx‐MH) and Zhenshan 97B (wx‐MH), contained a

fragment less than 6.1 cM in length around the waxy gene region from the

donor parent, with the rest of the genome being from the original Zhenshan

97. The introduction of this fragment has greatly improved the cooking and

eating quality of inbred lines and their resultant hybrids, with the agronomic

performance essentially the same as the original maintainer line and resultant

hybrid. Additionally, the selected lines and their hybrids showed reduction in

opacity (a change that is highly preferred from consumer’s view point) and

grain weight. However, the hybrids yielded at a similar level to the original

hybrid (Shanyou 63), presumably because of phenotypic plasticity as a result

of strong heterosis (Zhang et al., 1994). Long‐te‐fu (LTF) and Zhan‐shan 97

(ZS) are the two key female parents widely used for the generation of indica

hybrid rice in China. However, both have poor cooking and eating qualities

because of high AC. Liu et al. (2006) used MAS to introgress Wx‐T allele

(conferring intermediate AC and thus good quality) into the maintainer

(LTF‐B and ZS‐B) and their relevant male‐sterile lines (LTF‐A and ZS‐A)

to generate improved indica hybrids. The resulting maintainer lines (LTF(tt)‐B
and ZS(tt)‐B) and hybrids showed improved cooking and eating qualities with

no significant alterations in their agronomic traits.

Rice with low glutelin content is suitable for patients aVected by diabetes

and kidney failure. The Lgc‐1 locus confers low glutelin in the rice grain,
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located on chromosome 2 between flanking markers (Miyahara, 1999). This

trait has been successfully incorporated into japonica rice with 93–97%

selection eYciency using SSR2‐004 and RM358 markers (Wang et al.,

2005a). Additionally, grain quality traits such as 1000‐seed weight, kernel

length/breadth ratio, basmati type aroma, and high AC have been combined

with resistance to bacterial blight using marker‐assisted backcross breeding

(Joseph et al., 2003; Ramalingam et al., 2002).

Wheat: the major grain quality traits in wheat are protein content and

composition and grain color that influence bread‐ and noodle‐making qua-

lities. Gliadins and glutenins determine physical quality of wheat flour dough

(Payne, 1987). Dough with high elasticity and reasonable extensibility is ideal

for bread making, while highly extensible dough is good for making biscuits,

and dough with intermediate properties is good for flat bread or noodles.

Most of these quality traits are genetically highly complex, conferred by

many genes showing considerable GEI. Moreover, evaluation of these traits

requires well‐developed laboratory procedures and equipments and a large

sample size for evaluation. These factors force most wheat breeders to only

evaluate quality traits in advanced generations of their breeding programs.

Thus, it is surprising that although for many of these traits markers have

been identified and validated (see Section III), their use in breeding has been

limited. Exploiting allelic variation at the Glu‐1 (endosperm storage protein

subunit) locus to improve bread‐making quality has been one of the early

examples in which markers were used to improve wheat quality traits (de

Bustos et al., 2001; Koebner, 2003).

Sun et al. (2005) used a novel STS marker for improving polyphenol

oxidase (PPO) activity in bread wheat. Breeding wheat cultivars with low

PPO activity is the best approach to reduce undesirable darkening of bread

wheat‐based end‐products, particularly for Asian noodles. Based on the

sequences of genes conditioning PPO activity during kernel development,

28 pairs of primers were developed. One of these markers designated as

PPO18, mapped to chromosome 2AL, can amplify a 685 and an 876‐bp
fragment in the cultivars with high‐ and low‐PPO activity, respectively. QTL

analysis indicated that the PPO gene cosegregated with the STS marker

PPO18 and is closely linked to Xgwm312 and Xgwm294 on chromosome

2AL, explaining 28–43% of phenotypic variance for PPO activity across three

environments. A total of 233 Chinese wheat cultivars and advanced lines

were used to validate the correlation between the polymorphic fragments of

PPO18 and grain PPO activity. The results showed that PPO18 is a codomi-

nant, eYcient, and reliable molecular marker for PPO activity and can be

used in wheat breeding programs targeting noodle quality improvement.

Maize: maize plays a very important role in human and animal nutrition.

The endosperm of the maize seed has several distinct regions that have

diVerent physical properties. The aleurone is the outer layer of the
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endosperm, composed of specialized cells that secrete hydrolytic enzymes

during germination. Beneath the aleurone are starchy endosperm cells filled

with starch and storage proteins, thus creating two distinct regions—the

‘‘vitreous’’ or glassy endosperm and the ‘‘starchy’’ endosperm. The vitreous

endosperm transmits light, whereas the starchy endosperm does not. Typi-

cally, the endosperm is �90% starch and 10% protein (Gibbon and Larkins,

2005). Normal maize protein is deficient in two essential amino acids (lysine

and tryptophan) and has a high leucine:isoleucine ratio and biological value

(Babu et al., 2004). A naturally occurring recessive mutant gene opaque‐2,
observed first in a Peruvian maize landrace, gives a chalky appearance to the

kernels and has improved protein quality due to increased levels of lysine and

tryptophan in the endosperm (Mertz et al., 1964). However, this trait appears

to be associated with inferior agronomic traits such as brittleness and

increased susceptibility to insect pests. With the discovery of ‘‘modifier

genes’’ (mo2) that alter the soft, starchy texture of the endosperm, maize

breeders developed hard endosperm o2 mutants designated as ‘‘quality pro-

tein maize’’ (QPM) (Nelson, 2001; Prasanna et al., 2001), which have the

phenotypes and yield potential of normal maize but maintain the increased

lysine content of o2. Opaque 2 is a recessive trait but due to the eVect of the
modifiers, QPM behaves as a quantitative trait. Using SSRs and backcross

breeding, Babu et al. (2004) developed maize lines that had twice the amount

of lysine and tryptophan as compared to local cultivars and recovered up to

95% of the recurrent parent genome.

Sweet corn is another class of edible‐grade maize, which is highly preferred

as roasted/or boiled cobs. In sweet corn, breeding for improved seedling

emergence and eating quality is complicated because of the inverse relation-

ship between these traits. High kernel sugar content is one of the reasons for

poor seedling emergence (Douglass et al., 1993), influenced by many kernel

characteristics that are under the control ofmany genes (Azanza et al., 1996a,b).

Evaluation of these traits requires diYcult and expensive characterization in

the laboratory. However, using marker‐assisted backcross or population

breeding, it has been possible to select progenies with improved seedling

emergence that also has high sucrose content (Yousef and Juvik, 2001a,

2002).

Barley: malt is a major rawmaterial for the production of beer. Characters

that aVect malting quality include malt extract content, a‐ and b‐amylase

activity, diastatic power, malt b‐glucan content, malt b‐glucanase activity,

grain protein content, kernel plumpness, and dormancy, all are quantitative-

ly inherited variously influenced by the environment (Zale et al., 2000). There

are few barley cultivars with good malt quality that brewers are reluctant to

change from due to their concerns about the resultant changes in flavor and

brewing procedures. For example, the goal of US Pacific Northwest barley

breeding program is to produce high‐yielding NILs that maintain traditional
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malting quality characteristics but transfer QTL associated with yield, via

marker‐assisted backcrossing, from the high‐yielding cultivar Baronesse to

the North American two‐row malting barley industry standard cultivar

Harrington. Schmierer et al. (2004) targeted Baronesse chromosome 2HL

and 3HL fragments presumed to contain QTL that aVect yield. Using

backcross breeding and QTL/marker information, they identified a NIL

(00–170) that when evaluated for yield over 22 environments and for malt

quality over 6 environments produced yield equal to Baronesse while main-

taining a Harrington‐like malt quality profile. Other studies have also

reported the development of lines with improvedmalt quality: white aleurone

color and high a‐amylase content (Ayoub et al., 2003), and high in b‐glucan
and fine‐coarse diVerence (Igartua et al., 2000).

Soybean: Concibido et al. (2003) introgressed yield‐enhancing QTL from

exotic soybean germplasm Glycine soja (PI 407305). They detected yield‐
enhancing QTL located on LG B2 (U26). In a 2‐year multilocation trial,

individuals carrying the PI407305 haplotype at the QTL locus demonstrated

8–9% yield advantage over individuals that did not contain the exotic haplo-

type. When assessing the QTL eVect in various elite genetic backgrounds,

they found that this QTL conferred enhanced yield in only two of the six

genetic backgrounds, although individuals carrying the PI407305 haplotype

at the QTL locus always had an average 9% yield advantage in yield trials

across locations.

Common bean: Tar’an et al. (2003) used an index based on QTL‐linked
markers and ultrametric genetic distances between progeny lines and a target

parent to select for increased yield in their breeding program. Lines with a

combination of phenotypic performance and high QTL‐based index pro-

duced greater yield over those developed by using high QTL‐based index,

conventional phenotypic selection, and a low QTL‐based index. They also

demonstrated that the use of the QTL‐based index in conjunction with the

ultrametric genetic distance to the target parent would enable a plant breeder

to select lines that retain important QTL in a desirable genetic background.

Pea: Resistance to lodging, a key objective in many pea breeding pro-

grams, is controlled by two genes that markers A001 (in coupling phase) and

A004 (in repulsion phase) are associated with resistance to lodging

(Warkentin et al., 2004). Zhang et al. (2006a) evaluated the eVectiveness of
these markers in F2 population of eight crosses. The lowest lodging score for

each population was obtained from plants with the combination of A001

(presence) and A004 (absence). They detected a higher proportion of lodging

resistant F3 families from this marker combination as compared with pheno-

typic selection in F3 generation. Thus, A001 and A004 are useful forMAS for

lodging resistance in early generation pea breeding populations.

The preceding examples demonstrate that marker‐assisted breeding is a

viable option to supplement conventional breeding programs for certain
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traits and where robust markers are available. To date, MAS has been

frequently used to transfer simply inherited traits or to pyramiding genes

with major eVects but much less for improving polygenic traits. However, a

good knowledge of the trait genetics, interaction eVects (epistasis, genetic

background, and environment), population size limitations, accurate pheno-

typing, user‐friendly PCR‐based marker assays, marker‐trait association,

and genetic recombination (closer the distance between marker and the

gene/QTL, lesser the chance of recombination and loss of selective power),

and the ability to timely manage and interpret the voluminous marker data

largely influence our ability to successfully integrate MAS into crop breeding

programs. In addition, many breeders still consider the use of marker tech-

nology as prohibitorily expensive for routine use in breeding programs.

However, it is encouraging to note that high‐throughput genotyping plat-

forms for large‐scale, low‐cost applications are rapidly advancing, largely

driven by the human diagnostics community. In turn, this is encouraging the

development of a genotyping service industry, thus disconnecting breeding

programs from the need to establish and maintain capital‐intensive in‐house
facilities, although many of these companies struggle to provide a speed of

service in‐line with the often very short breeders’ decision window. Hence,

the cost for MAS genotyping will become more aVordable to breeding

programs but probably only for those who can embrace SNP markers.
D. SPECIFIC CHALLENGES FOR ALIEN GENE INTROGRESSION

Wild crop relatives are traditionally looked on as potential sources of gene(s)

for resistance tomany pests and diseases that are not available in cultigens, thus

making them a valuable resource for gene transfer in cultivated species. Both

conventional crossing and selection, and molecular breeding (MAS and trans-

genics) have been used to transfer pest and disease resistances from wild

relatives to cultivated crop species (Dwivedi et al., 2007 and references therein).

Resistance gene(s) from wild relatives have facilitated large‐scale cultivation of

crops in disease or pest endemic regions of the world, that is, bacterial blight

(BB) and grassy stunt virus in rice, BB in maize and potato, and nematodes in

many crops.Wild relatives are usually inferior tomodern cultivars with respect

to yield and seed quality. However, the successful transfer of improved fruit

yield and processing quality in tomato (Bernacchi et al., 1998a,b; de Vicente

and Tanksley, 1993; Fridman et al., 2000; Fulton et al., 1997; Rick, 1974;

Yousef and Juvik, 2001b) led to the realization that wild relatives can contain

beneficial genes (in addition to resistance to biotic stresses) associatedwith yield

and seed quality, although these are often phenotypically masked by deleteri-

ous genes and are thus diYcult to identify and transfer through conventional

selection and breeding.
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Using advanced backcross and QTL analysis (Tanksley and Nelson,

1996), yield and grain quality enhancing alleles from wild relatives have

been successfully introgressed in rice, wheat, barley, sorghum, common

bean, and soybean (Dwivedi et al., 2007 and references therein). Dramatic

yield advantages have been reported in rice, for example, through the intro-

duction of two yield‐enhancing QTL alleles (yld1.1 and yld2.1) from

O. rufipogon (AA genome) into 9311 (one of the top performing parental

lines used in the production of super hybrid rice in China) contributed in

excess of 20% yield increases in rice; that is, about 1 t ha�1 gain in yield in

some of the newly bred cultivars, largely because of increases in panicle

length, panicles per plant, grains per plant, and grain weight. These improved

lines with 9311‐type genetic backgrounds are being used to raise the existing

yield potential of super hybrid rice in China (Liang et al., 2004). Oryza

grandiglumis (allotetraploid, CCDD genome species) is another wild relative

contributing positive alleles for increased grain yield in rice. In contrast, only

6–8% increase in grain yield was reported when positive alleles from

Hordeum spontaneum were introgressed into barley. Wild relatives also con-

tributed positive alleles for improved grain characteristics in rice (long,

slender, and translucent grains, and grain weight), wheat (grain weight and

hardness), and barley (grain weight, protein content, and some malt quality

traits). Of particular interest is a locus for grain weight, tgw2, which con-

tributed positive alleles from O. grandiglumis that are independent from

undesirable eVects of height and maturity (Yoon et al., 2006). In a similar

study, Ishimaru (2003) identified a grain weight QTL, tgw6, responsible for

increased yield potential without any adverse eVects on plant type, or grain

quality in the Nipponbare genetic background. Similarly, alleles from G. soja

conveyed 8–9% increased in grain yield and improved the protein content

in soybean (Concibido et al., 2003).

Development of exotic genetic libraries (also known as CSSL, IL, or CL)

is another approach to enhance utilization of wild relatives to expand

crop gene pools (see Section II.A). These genetic stocks provide a well‐
characterized potential resource for uplifting the yield barriers through

pyramiding beneficial loci and fixing of positive heterosis. For example,

when tomato ILs carrying three independent yield‐promoting genomic

regions were pyramided, the progenies produced more than 50% greater

yield compared to controls (Gur and Zamir, 2004). In a report (Yoon

et al., 2006), several rice lines outperformed Hwaseongbyeo (�1 t ha�1

increase in grain yield). Several grain characteristics, including grain weight,

were improved after crossing an advanced IL containing O. grandiglumis

segments, HG101 (very similar to Hwaseongbyeo) with Hwaseongbyeo. The

above examples demonstrate that wild relatives contain desirable alleles for

agronomic traits, even though their eVect is phenotypically not evident in

wild relatives. It is important that more emphasis should be given to exploit
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wild relatives to identify yield enhancing alleles to further raise the yield

potential of crop cultivars. This is now an achievable goal as we progress

toward saturating the genetic linkage maps of many crops with user‐friendly
markers, and the technological cost of applying marker technology is

substantially reduced.
V. SUCCESSFUL APPLICATION OF MARKER‐ASSISTED
GENETIC ENHANCEMENT IN PRIVATE SECTOR

BREEDING PROGRAMS
During the 1990s, MAS was often presented as holding the potential to

replace phenotypic selection and dramatically reduce the time required to

breed new cultivars (Mazur, 1995). Multinational seed companies have made

large investments in genomic technologies and are now routinely using

applied genomic tools to (1) dissect the genetic structure of the germplasm

to understand gene pools and germplasm (heterotic) groups, (2) provide

insights into allelic content of potential germplasm for use in breeding,

(3) screen early generation breeding populations in order to select segregants

with desired combinations of marker alleles associated with beneficial traits

(especially where this avoids the costly phenotypic evaluations), (4) for

accelerating the introgression and backcrossing of transgenes into diverse

elite breeding lines, and (5) establish genetic identity (through DNA finger-

printing) of their products (Cooper et al., 2004; Crosbie et al., 2006; Fu and

Dooner, 2002; Niebur et al., 2004).

MAS has been successfully applied in cultivar development for maize

(Crosbie et al., 2006; Eathington, 2005; Johnson, 2004; Niebur et al., 2004).

Private sector soybean breeders have also made extensive use of MAS to

select for resistance to soybean cyst nematode (SCN, Heterodera glycines),

phytophthora root rot (Phytophthora sojae), and brown stem rot (Phialo-

phora gregata). Using MAS breeders have been able to fix these resis-

tance traits in their breeding materials before proceeding to yield trials

(Cahill and Schmidt, 2004; Cregan et al., 1999; Crosbie et al., 2006). It is

reported that MAS has allowed Pioneer to double their rate of genetic im-

provement for yield among SCN‐resistant cultivars (https://www.pioneer.com/

pioneer_news/press_releases/products/marker_assisted_selection).More re-

cently, Monsanto breeders used MAS in the development of soybean cultivar

Vistive that has low levels of linolenic fatty acid, thus reducing the need for

postharvest processing to lower or eliminate the presence of unhealthy trans

fats from foods. Vistive soybeans meet processor’s growing demand for low‐
linolenic oils, which attract premiums for growers. Other upcoming products

fromMonsanto are Vistivemid‐oleic (increase shelf life and flavor), Vistive low

https://www.pioneer.com/pioneer_news/press_releases/products/marker_assisted_selection
https://www.pioneer.com/pioneer_news/press_releases/products/marker_assisted_selection
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saturates (combining lower saturated fats, lower trans fats, and improved

stability), and Vistive omega‐3 (providing consumers new options for omega‐
rich foods) products (http://www.monsanto.com/monsanto/layout/products/

seeds_genomics/oilseeds.asp). Despite these successes, many private sector

breeding programs still rely heavily or solely on phenotypic selection and

most agree that MAS will never entirely replace phenotypic evaluation.

Introgression breeding, also referred to as MABC, has been one of the

most, if not the most, successful form of MAS in private breeding programs

to date. The use of MABC to introgress transgenes into elite maize or

soybean inbred lines (Crosbie et al., 2006; Ragot et al., 1995) has permitted

the rapid deployment of transgenic insect and herbicide resistance traits

across regions, creating tremendous value for seed companies, farmers, and

other downstream actors. MABC is also very eVective for introgressing

specific genes or QTL from donor genotypes (nonadapted materials or

related species) into elite breeding lines reducing both the time needed to

produce commercial cultivars and the risk of undesirable linkage drag with

deleterious donor attributes. Reports of successful use of MABC in private

breeding programs are scarce in spite of positive outcomes from a variety of

public programs on tomato, rice, barley, and soybean (Dwivedi et al., 2007).

Financial cost‐benefit considerations will usually determine whether intro-

gression breeding should be conducted with or without the assistance of

molecular markers.

In public breeding programs, marker‐assisted recurrent selection (MARS)

has often been used in the context of population improvement (Gallais et al.,

1997; Hospital et al., 1997; Knapp, 1998; Moreau et al., 1998; Xie and Xu,

1998), based on breeding schemes where selected individuals are random‐
mated. In contrast, private breeding programs, in particular for maize, have

often implemented MARS schemes focused more on directed recombination

(Crosbie et al., 2006; Eathington, 2005; Ragot et al., 2000) in order to recover

an ideal genotype through the creation of a mosaic of favorable chromosom-

al segments from the parental genotypes. This approach is referred to as

genotype construction and is based on simultaneous selection for multiple

traits (often using marker information only) such as yield, biotic and abiotic

stress resistance, and quality attributes (Eathington, 2005; Ragot et al.,

2000). Although several of these target traits have complex inheritance, the

commercial breeding programs report dramatic increases in the rate of

genetic gain over phenotypic selection in maize (Crosbie et al., 2006;

Eathington, 2005). The specific molecular breeding systems used by commer-

cial breeding programs are often trade secrets, but it is likely that there are

several critical factors in their success including: (1) simultaneous marker‐
only selection for several traits involving probably 10 to more than 50 QTL

or genes, (2) multiple cycles of MARS per year using markers flanking

http://www.monsanto.com/monsanto/layout/products/seeds_genomics/oilseeds.asp
http://www.monsanto.com/monsanto/layout/products/seeds_genomics/oilseeds.asp
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QTL, (3) use of oV‐season nursery facilities for generation advance, and

(5) genotyping large populations and use marker information to select plants

prior to flowering to enable directed recombination. In these breeding sys-

tems, phenotypic selection is not applied at every generation. For example,

the cycle length in MARS can be as short as 3 months, while that of

phenotypic recurrent selection can span from 1 to several years. Such sub-

stantial diVerences in cycle length are expected to have significant impacts on

the rate of genetic gain over the entire breeding system. Commercial breeding

programs have also put great eVorts into reducing costs, not only for geno-

typing data but also for phenotypic data. It is likely that cost ratio between

marker data points to experimental field plot data points is lower in large

private breeding programs than in most public research laboratories or small

private programs. These are important factors for the economic eYciency of

MARS applications.

Successful application of MAS in the private sector has been featured by

its crops. For example, rice, as an autogamous crop, is very hard to make its

hybrid vigor utilized compared to open‐pollinated crops such as maize.

Hybrid rice breeding has been depending on using either male sterility and

its fertility restoration or environment‐induced genic male sterility for hybrid

seed production. The former needs a large number of testcrosses and progeny

tests to identify the genes for male sterility and fertility restoration during the

breeding process, while the latter depends on specific environments and

multiple location or season trials to select for the related genes, both of

which are extremely time consuming and labor intensive. MAS in hybrid

rice breeding for the traits requiring testcrossing or progeny testing and for

environment‐dependent traits has been intensively discussed elsewhere (Xu,

2003), and now has become routine in hybrid breeding using both cytoplas-

mic male sterility and environment‐induced genic male sterility. In addition,

MAS has been widely used in the private sector for seed quality assurance.

One of the examples is to identify and remove the false hybrids produced

because the temperature during flowering time goes abnormal and down

below the critical level that is required for conversion of environment‐
induced male sterility lines from sterility to fertility, which would not happen

under normal temperature conditions.

The international seed companies have invested heavily in the assembly,

modification, and integration of new methods and tools for the detection of

DNA polymorphisms, the continuous operation of nurseries, and the opti-

mization of data management, analysis, and interpretation. The develop-

ment of PCR technology and the large‐scale identification of SNPs

(Lindblad‐Toh et al., 2000) have facilitated the development of molecular

marker systems amenable to the levels of miniaturization and automation.

This has in turn allowed the development of genotyping pipelines capable of

rapidly and cost eVectively generating millions of data points a year. It is only
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at this level and timeliness of throughput that large breeding programs can

realize true benefits of MAS. The allelic diversity at SNP loci is low (usually

limited to two alleles, although generally providing codominant informa-

tion), and the level of polymorphism at any given SNP loci may also be low in

breeding populations. However, this is generally considered to be more than

oVset by the very high abundance and random distribution of SNP loci which

can be combined and analyzed as haplotypes (Ching et al., 2002). Thus,

highly dense genetic maps can be developed with thousands of SNP markers,

and marker‐trait associations can be readily identified that are very close or

inside the target gene. For these reasons, SNP‐based genotyping is becoming

the assay of choice for private MAS programs for well‐studied crops.

The ability to select plants without their being phenotypically character-

ized is one of the main advantages of MAS. Many private breeding programs

have upgraded or are upgrading their continuous nurseries (greenhouses,

screenhouses, or open fields) so that they can be managed, equipped, and

staVed in such a way that the plants complete their life cycle as quickly as

possible and that tissue samples be collected eYciently at each generation for

genotyping. EYcient MAS programs require access to and synthesis of very

large amounts of data of diVerent types (phenotypes, genotypes, pedigrees,
environmental characteristics) and from various sources into useful genetic

information. The rapidly increasing amounts of data generated in crop

research and breeding programs driving dramatic advances in supporting

computational sciences. Modern molecular breeding requires a range of

complex large‐scale data analyses to be carried out very rapidly. In particu-

lar, the development of computer software to track, manipulate, and com-

paratively analyze data for major genes, QTL, background haplotypes, and

phenotypes across germplasm, pedigrees and cycles of the breeding process.

Most of the computational tools used in private sector molecular breeding

programs have been developed internally and remained under proprietary

protection. Some large private breeding programs had established large

research and support groups of dedicated data managers prior to the advent

of MAS and genomics. Today, there is a fundamental dependence on dedi-

cated specialists, systematically integrated into breeding programs, genotyp-

ing pipelines, and repositories of internal and external genetic information.

Many private breeding programs have invested heavily in the implemen-

tation of MAS. While there are no public reports of the cost‐benefit ratio
of the commercialization of MAS‐derived cultivars in private sector, the

growing portfolio of patent applications associated with MAS techno-

logies (e.g., US5,492,547 1996; US5,746,023P 1998; US6,368,806B1 2002;

US6,399,855B1 2002; US6,455,758B1 2002; US2005/0144664A1 2005;

WO2005/000006A2 2005; WO2005/014858A2 2005) clearly suggests that

commercial breeding programs see significant comparative advantage from

the use of such approaches. Moreover, the likely scale of the investment
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suggests that commercial seed companies are much more convinced of the

benefits of MAS than most public breeding programs.

Small‐ to medium‐sized seed companies without access to technology and

with limited resources are forming alliances with multinational companies,

universities, and CGIAR institutions to enable access to the necessary infra-

structure, core competencies, and marker technologies without the prohibi-

tively high‐capital investment normally associated with such endeavors, for

example, the ‘‘Agribiotech Park’’ at ICRISAT in India (http://www.agri‐
sciencepark.icrisat.org/amenities.htm), the BecA at ILRI in Kenya (http://

www.biosciencesafrica.org/BecA%20home.htm/), the Agronatura at CIAT

in Colombia (http://www.ciat.cgiar.org/agronatura/index.htm), and CRIL of

the IRR I‐ CIM MYT alliance (http ://www: iita.or g/cms/arti clefiles/4 90-

Genon ics%20T askforce%20R epo rt%20March% 2020 06.doc).
VI. IMPACT OF MARKER‐ASSISTED GENETIC
ENHANCEMENT
A. ENHANCED SELECTION POWER

The enhanced selection power of DNA markers resides in their ability to

precisely identify a plant’s genotype for a specific target trait without the

confounding eVects of the environment (Ribaut and Hoisington, 1998). The

selection of genotypes based on genetic values predicted by molecular marker

data can increase the rate of genetic gain by enhancing the precision of

selection and by shortening selection cycles (Meuwissen et al., 2001). MAS

may also be valuable for pyramiding genes of similar phenotypic eVect or
selecting for resistance to pests and diseases not present in the breeding

location. The high heritability of genetic markers (in theory being 1.0,

although in practice rarely achieving this absolute level) compared to the

trait for which they have been developed make them useful for MAS.

Improvements in marker techniques have increasingly added to the selection

power of MAS, both by providing more reliable types of markers and a

rapidly increasing list of trait‐associated loci. A critical improvement was

the move from time‐consuming hybridization‐based assay (RFLP) to PCR‐
based assays (initially RAPD) for which amplification is dependent on DNA

concentration and quality, annealing temperature and thermocycling condi-

tions, Taq polymerase concentrations, and the relative proportion of all

components in the PCR cocktail. Unfortunately, RAPD suVers many repro-

ducibility and transferability problems, thus considerable eVorts have been

made to develop more robust PCR‐based marker systems such as SCAR

markers and other single‐copy markers which have proven more reliable and

repeatable and therefore of higher heritability. However, most recently two

http://www.agri-sciencepark.icrisat.org/amenities.htm
http://www.agri-sciencepark.icrisat.org/amenities.htm
http://www.biosciencesafrica.org/BecA%20home.htm/
http://www.biosciencesafrica.org/BecA%20home.htm/
http://www.ciat.cgiar.org/agronatura/index.htm
http://www:iita.org/cms/articlefiles/490-Genonics%20Taskforce%20Report%20March%202006.doc
http://www:iita.org/cms/articlefiles/490-Genonics%20Taskforce%20Report%20March%202006.doc
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new classes of PCR‐based marker have emerged that have the added advan-

tage of being highlight polymorphic in most breeding populations (SSR

markers) or highly abundant across most plant species genes (SNP markers).

SSR and SNP markers oVer greater precision, power of selection, and

perhaps most importantly, ease of scale‐up, and thus, have become the

markers of choice for molecular breeding programs of most crops. Thus,

the type of marker has become an important determinant of the power of

MAS to enhance selection. The selection power of molecular markers also

resides in their good genome coverage and capacity to provide complete

genome information, a characteristic that has also improved with newer

marker technologies.

The enhanced selection power of MAS in addition to being related to the

reliability and ease of applying a given type of marker also depends on

proximity of linkage between markers and the gene(s) of interest (Ribaut

et al., 1997b). In addition, the level of phenotypic variance explained by the

marker compared to the total genetic variance for the trait is also a critically

important criterion (Bearzoti and Vencovsky, 1998). Greater distance

between a marker and the gene(s) of interest underlying the target trait

reduces the power of selection. In terms of linkage, the nature of the cross,

particularly in terms of how closely are the parents related to each other and

to the pedigree of target breeding populations, aVects the frequency of

recombination around target genes within the mapping populations versus

the target breeding populations. The choice of parental genotypes for

mapping populations also determines the level of polymorphism and whether

the marker will facilitate the positive selection for the desirable or undesir-

able alleles. The potential risk that recombination will decouple the linkage

between marker locus and gene of interest can be addressed by using flanking

markers, which have greater power to counteract the eVects of recombina-

tion around loci of interest by providing a diagnostic for the introgression of

an entire genomic segment. MAS is most eVective when there is a high level of

polymorphism in the crosses being screened, and this is also the breeding

situation in which gene introgression is most diYcult, time consuming, and

plagued by linkage drag. Not surprisingly, therefore, marker‐assisted intro-

gression and marker‐accelerated backcross breeding are the areas where

genomic applications have had their widest application and greatest success.

Thus, there is a range of successful reports of using flanking markers for

introgression of new traits through interspecific crosses with wild relatives or

crosses between gene pools within the cultivated species, where markers are

often more eVective.
In the case of markers linked to the QTL, the proportion of the total

phenotypic variance conveyed by each QTL is a key to the value of that

marker in enhancing the breeding gain for the target trait. Similarly, there

should be a high level of confidence in the existence of a QTL associated with
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the target trait, as determined by the use of high LOD likelihood threshold

during the identification of QTL markers (Tanksley, 1993). Simulation stud-

ies have shown that when a moderate‐to‐large number of QTL are influen-

cing the target trait, a whole‐genome scanning approach is often necessary

and that the eYciency of MAS is substantially aVected by population size

and heritability of the target trait (Bearzoti and Vencovsky, 2002; Lande and

Thompson, 1990). Enhanced power of selection through MAS can come not

only from the power to make positive selection for a single gene but also from

its power to assert negative and positive selection for a suite of genes or QTL

across the entire genome (Hospital and Charcosset, 1997). It is in this

transition from single point interventions of MAS to holistic molecular

breeding strategies that we expect to see an exponential gain from the

application of genomics in plant breeding programs. In this case, marker

genotypes at various loci (associated with several mono‐, oligo, and/or

polygenic traits) are used within the context of an index for eliminating

part of a breeding population, thus reducing nursery growout space and

costs (Bearzoti and Vencovsky, 1998; Gimelfarb and Lande, 1994, 1995).

The most common application of MAS is in marker‐assisted/accelerated
backcross breeding. Optimally, this is based on positive foreground selection

for donor trait, positive background selection for the recurrent parent ge-

nome, and negative background selection against undesirable donor parent

alleles (Frisch et al., 1999b; Ribaut et al., 2002). Marker‐assisted introgres-

sion can dramatically reduce the number of generations of backcrossing

required to recover the elite parent background (Hospital et al., 1992),

although the number of generations saved depends on the size of the genome,

level of recombination in the cross, size of the progeny population, and

number of available markers. Genomic map length, population size, and

duration of backcrossing also influence on the attainable rate of donor

genome substitution. For example, larger genome requires larger population

as well as more markers to attain a given rate of donor genome substitution

(Stam, 2003). Meanwhile, partial or whole chromosome selection can be used

when introgressing from an exotic genome where recombination with the

cultivated genome is very low or nonexistent (Wittaker et al., 1995). MAS

can also be a great assistance in the selection of favorable recombinants

during inbreeding and/or crossbreeding cycles using backcross products,

thus increasing the speed with which advanced lines are generated (Frisch

et al., 2000). Furthermore, MABC can reduce the eVects of linkage drag by

selecting for fewer and smaller donor genome fragments. In this case,

increasing selection power and breeding gain is obtained by use of a greater

number of background markers combined with closer flanking markers for

the target trait gene(s).

Using computer simulations and additive, dominance, and epistasis

genetic model, Liu et al. (2004a) demonstrated that combining MAS in



242 S. L. DWIVEDI ETAL.
early generations with phenotypic selection in later generations is the most

eYcient breeding strategy for self‐fertilizing crops. Investigation on diVerent
crossing strategies and consideration of when to screen, what proportion to

retain, and the impacts of dominant versus codominant marker expression

revealed important choices in the design of MAS programs that can produce

large eYciency gains. F2 enrichment, increasing homozygosity through

inbreeding or DH, and backcrossing to increase the frequency of recurrent

parent alleles are eVective strategies for improving the eYciency of MAS that

will allow either smaller populations to be screened or selection at more loci.

However, fixation of alleles in early generation requires larger populations

and is undesirable in most instances (Bonnett et al., 2005).
B. REDUCED COST, INCREASED FEASIBILITY, TIME SAVINGS, AND

PARENTAL SELECTION

MAS can be useful for the selection of traits that are diYcult or impossible

to breed through phenotypic selection due to logistical, biological, or

quantitative‐based constraints. In terms of genetic associations, codominant

markers for recessive genes are especially valuable since phenotypic selection

will be highly ineYcient as it is likely to discard all heterozygous progeny

during early generations of the breeding cycle. While recessive genes can be

selected with progeny testing or testcrosses, this clearly adds substantial time

and eVort to the breeding process. Thus, MAS has the advantages of obviat-

ing these time‐consuming steps and facilitating precise and eYcient early

generation selection. Dominant markers in coupling phase with target trait

can also be of value in such breeding systems. However, if only a dominant

marker in repulsion is available, then early generationMAS would be limited

to negative selection against homozygous dominant and heterozygous

plants, which would be ineYcient since potentially useful allele‐carrying
genotypes would be eliminated. This type of marker is most useful in

advanced generations of self‐pollinated crops when a recessive gene has

already been fixed by inbreeding. However, MAS with this type of marker

is impossible in generations where no homozygous recessive plants exist at all

such as the BC1F1 to the dominant allele‐containing parent.

MAS scenarios with the greatest cost‐benefit ratio include traits that

would otherwise require highly expensive phenotypic or biochemical evalua-

tion procedures (Ribaut and Hoisington, 1998). This is the case for traits that

require extensive field testing at specific locations or times of the year.

Likewise, many phytochemical traits analyzed in reproductive or vegetative

tissues at various growth stages are expensive to carry out. For example, the

analysis of seed quality, secondary metabolites, and micronutrients remains

expensive and time‐consuming and MAS can replace more costly and
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diYcult assays with more standardized DNA‐based technologies. Molecular

markers are proving more eYcient, rapid, and simple to implement on a large

scale for seed protein traits since they are based on DNA extracted at any

growth stage from a small amount of expendable tissue. For example, in the

selection of quality protein maize, MAS is cost‐eVective when a visual

marker is not available (Dreher et al., 2002, 2003; Morris et al., 2003).

Similarly, for the evaluation of mineral content in seed tissue, MAS might

be less expensive than traditional quality evaluations, a process that some-

times requires dissected seed organs or collecting several grams of seed tissue.

The advantage of MAS resides in the small amount of template DNA

required for carrying out a large number of assays. Thus, MAS eYciency

can be dramatically increased by using a single DNA extraction for the

evaluation of several to many markers.

After the development of molecular markers and validation of their power

of indirect selection for the trait (see Section III), it is then often necessary to

optimize the assay for scale‐up to large‐scale application (Young, 1999).

Sometimes this involves changes in breeding program logistics, PCR proto-

cols, marker detection technique, or even complete redesign of the markers

themselves. In all cases, the driving criteria being to reduce unit costs and

turn around times while increasing throughput and minimizing errors, and

ultimately optimizing the cost‐benefit advantage of MAS over phenotypic

selection. Marker redesign has been a common element of scaling‐up exer-

cises and can involve something as simple as optimizing the size or genomic

position of the PCR amplification fragment. Technologies that speed up the

implementation process, reduce laboratory requirements or errors, and lower

the costs associated with scaling‐up are crucial to the success of MAS (Gu

et al., 1995). For example, techniques have been developed which reduce the

cost of DNA extraction and result in large time‐savings (Dellaporta et al.,

1983; Ikeda et al., 2001b; Klimyuk et al., 1993). Kuchel et al. (2005) designed

a genetically eVective and economically eYcient marker‐assisted breeding

strategy aimed at selecting for favorable alleles in wheat breeding. Although

incorporating MAS for allele enrichment in the BC1F1 population, gene

selection at the haploid stage, and the selection of recurrent parent back-

ground of DH prior to field testing was eVective to select for a high frequency

of desired alleles, the incorporation of marker selection at the BC1F1 and

haploid stage was the most eVective as it not only increased genetic gain over

the phenotypic selection but also reduced cost by 40%.

Furthermore, MAS can be used in conditions that are not favorable for

phenotypic screening, for example selection of resistance genes in regions

where quarantine restriction prevents introduction of an exotic pathogen or

pathogen strain or where a pathogen does not occur at a suYciently high

level to perform eVective field screening and selection (Ribaut and

Hoisington, 1998). Markers for disease resistance have the advantage of
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obviating the need for field or greenhouse inoculations that sometimes are

ineVective or unreliable if environmental conditions are not propitious and

can result in savings in time and cost compared to phenotypic selection.

A further advantage of MAS is that it can be implemented in any generation

of the breeding process and under both field or greenhouse conditions, while

phenotypic selection often requires planting a separate trial and provision of

specialized labor for inoculation, agronomic management, and evaluations

or scoring. In addition, phenotypic screening of fixed lines or segregating

populations often requires replicated testing to minimize the eVect of GEI,

whereasMAS can be evaluated on a single plant basis as long as the marker is

associated with a locus which contributes a large percentage of the genetic

variance of the target trait. A potential disadvantage of relying onMAS over

phenotypic selection is that it commits a breeder to a unique gene or set of

genes for a given trait. Thus, where a breeder relies solely on MAS for

selection, this can exclude other possible genes and the use of other poten-

tially useful parents that do not possess the allele(s) being targeted by the

MAS. Of course, this is rarely the recommended approach, and most molec-

ular breeding programs will involve at least one or two cycles of phenotypic

evaluation during the overall breeding process. In this way, the results of the

MAS can be validated, while other alleles and genes positively contributing

to the target trait can be selected. A refined model for this approach has been

proposed by Ribaut and Betrán (2000) in maize for fixing valuable genes in a

population improvement breeding program (that includes a large number of

parents) through the application of single large‐scale (SLS) MAS and then

intercrossing to recreate diverse populations for further selection.

MAS can also help in situations where timeliness is a major constraint

since DNA can be obtained at the seedling stage or depending on the crop,

even from the seed itself. Timeliness is an especially important issue in the

case of perennial crops where many economically important traits are only

expressed at the reproductive stage which may take one or more years.

Therefore, MAS for late cycle traits in long‐duration crops provides a

much greater cost‐benefit ratio than in annual crops (Morris et al., 2003).

When breeding complex traits with low heritability and high GEI, selec-

tion based on phenotypic evaluation can become very diYcult. In these

situations, the dissection of complex traits into component traits can increase

the chances of eVective selection as each component can be selected separately.

Then, in turn, MAS for major QTL underlying each component trait may

provide the best breeding gains. Selection of just the QTL that account for

the largest proportion of phenotypic variance is advisable under these con-

ditions (Ası́ns, 2002; Tanksley, 1993). In the case of polygenic traits, MAS

has the potential for pyramiding diVerent sources of genes for a given trait,

whether it be to create durable disease resistance through simultaneous

deployment of multiple R gene combinations or to create superior cultivars
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through the accumulation of positive alleles for diVerent components of a

given trait such as drought or low soil fertility tolerance. There are a number

of good examples of successful pyramiding of pest or disease‐resistance genes
(see Section IV.A). However, there are very few reports of successful applica-

tions of MAS for complex abiotic stress tolerance traits (see Section IV.B).

Thus, the long held belief that MAS would have its greatest impact on trait

with low heritability and high GEI interaction still awaits widespread practi-

cal demonstration. However, experience has shown that the ability to ma-

nipulate even one important component trait with confidence can make a

breeding program more eYcient if that gene is highly desirable and valuable

for advanced materials.

MAS can also be useful in the selection of parental genotypes, especially in

the breeding of crops where heterosis is expressed. In this case, parental

selection can benefit from marker assessments of genetic distance between

individuals in crops where genetic distance has been shown to be predictive of

heterotic pools or combining ability. Finally, MAS can also be used to

determine heterozygosity during the creation of inbred lines for allogamous

crops.
C. OVERVIEW OF PRODUCTS FROM MOLECULAR BREEDING

To date, polymorphic DNA markers and genetic maps are available for

virtually all crops, albeit in varying numbers and levels of genomic saturation

(see Sections II.B and C). Similarly, the genetics of many agronomic traits is

well understood in many crops, and the marker‐trait linkages have been

reported for many traits in a large number of crops, although reports of

validation in diVerent genetic backgrounds and environments are naturally

only beginning to emerge (see Section III). MAS is now being practiced in

most well‐studied crops (see Section IV.A–C), yet in the private sector MAS

applications are dominated by transgene introgression and backcross pro-

grams with only limited reports of their use for complex traits. In this section,

we provide an overview of the products (cultivars and breeding lines) devel-

oped using MAS in combination with conventional breeding. Eighteen

MAS‐derived cultivars and several advanced lines combining resistance to

biotic and abiotic stresses or improved grain quality have been reported in

rice, wheat, barley, pearl millet, common bean, and soybean (Table XV). To

date, MAS has been most successful in the selection of resistance to diseases

and for improving grain quality. For example, rice cultivars resistant to blast

in United States and to bacterial blight in Indonesia, wheat cultivars resistant

to rust in Canada, and common bean cultivars resistant to anthracnose and

Bean golden yellow mosaic virus in United States, and those with resistance to

Sclerotinia white mold in Canada have been developed using MAS and



Table XV

List of Cultivars and Hybrids, Advanced Lines and Improved Germplasm Developed by MAS in

Barley, Common Bean, Pearl millet, Rice, Soybean, and Wheat

Advanced lines and cultivars developed by

marker‐aided breeding References

Barley

Aluminum

Advanced lines including WB259, possessing good malt

quality and aluminum tolerance developed in Australia

http://www.cdesign.com.au/

bts2005/pages/papers_2003/

papers/134venkatanagappaS.pdf

Grain yield and malt quality

An isogenic line 00‐170 consistently produced high yield

and good malt quality in Australia

Schmierer et al., 2004

Common bean

Angular leaf spot

Resistance to angular leaf spot transferred into Carioca

type bean, Rudá in Brazil

(M. Blair, CIAT, personal

communication)

Anthracnose

Co‐42 allele transferred into pinto beans (highly

susceptible to Durango race) grown in North America

Miklas and Kelly, 2002

Resistance to anthracnose incorporated in Pinto bean

cultivar, USPT‐ANT‐1 containing Co‐42 gene that
confers resistance to all known North American races

of anthracnose in United States

Miklas et al., 2003

Resistance to anthracnose transferred in cultivar Perola

in Brazil

Ragagnin et al., 2003

Bean common mosaic necrosis virus (BCMV)

Red bean with resistance to BCMV, containing I and

bc‐3, developed for central America

Beaver et al., 1998

BCMV and anthracnose

1800 breeding lines of climbing beans, containing bc‐3, I,
C0‐4, and Co‐5, with combined resistance to BCMV

and anthracnose selected in Colombia

http://www.african crops.net/

abstracts2/bean/blair.htm

Bean golden yellow mosaic virus (BGYMV)

A pole bean cultivar, Genuine, resistant to BGYMV

developed in Central America

Stavely et al., 1997

A pole garden bean cultivar, Genuine, with moderate

resistance to BGYMV developed in United States

Stavely et al., 2001

Comman bacterial blight (CBB)

Pinto bean germplasm, ABCP‐8, resistant to CBB

developed in United States

Mutlu et al., 2005

USDK‐CBB‐15, dark red kidney bean, highly resistant to

CBB released in United States

(M. Blair, CIAT, personal

communication)

(continued)
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Table XV (continued )

Advanced lines and cultivars developed by

marker‐aided breeding References

CBB, anthracnose, and BCMV

Advanced lines with multiple resistance to CBB, BCMV,

and anthracnose developed in Canada

http://www.ontariobeans.on.ca.

ppyramidingDisease

ResistanceGenes.html

Rust

Rust resistant genes, Ur‐4 and Ur‐5, combined in the

BARC‐rust resistant green and waxy bean germplasm

lines in Honduras

Stavely and Steinke, 1990; Stavely

and McMillan, 1992

Rust resistant genes, Ur‐4 and Ur‐11, introgressed into

navy bean lines BelMiDak‐RR‐1 to 7 in Honduras

Stavely et al., 1994

Rust and anthracnose

Five lines resistant to rust and anthracnose developed,

with Vi0699 and Vi2599 significantly outyielding

controls in Brazil

Faleiro et al., 2004

Rust, anthracnose, and angular leaf spot

Resistance to anthracnose in TO and AB136; to angular

leaf spot in AND277; to rust in Ouro Negro; and to

rust and anthracnose in Ouro Negro transferred in

Brazil

(M. Blair, CIAT, personal

communication)

Rust and Bean golden yellow mosaic virus (BGYMV)

White‐seeded Snap bean cultivars, BELDADE‐RGMR

4, 5, and 6, possessing resistance to rust and BGYMV

released United States

(M. Blair, CIAT, personal

communication)

Sclerotinia white mold

QTLB7 and B8 QTL linked with resistance to white mold

transferred into Winchester and Maverick that yielded

at par with controls in Canada

Miklas et al., 2004 (http://www.

whitemoldresearch.com/

presentation2004/Miklas.pdf)

Pearl millet

Downy mildew

The parental lines of the original hybrid (HHB 67)

improved for downy mildew resistance through MAS

and conventional backcross breeding, and new hybrid

HHB 67‐2 with improved resistance to downy mildew

released in India

http://www.secheresse.info/article.

php3?id‐article¼1919

Rice

Amylose content

Cadet and Jacinto with unique cooking and processing

quality traits released in United States

http://usda‐ars‐beaumont.tamu.

edu/marker.html

Bacterial blight (BB)

Angke and Conde, possessing resistance to BB, produced

20% greater yield over IR64 and released in Indonesia

Bustamam et al., 2002

(continued)
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Table XV (continued )

Advanced lines and cultivars developed by

marker‐aided breeding References

Resistance to BB transferred in R8006 and R1176 and

when crossed to Zhong 9A, the hybrids (Zhongyou 6

and Zhongyou 1176) produced high yield, resistant to

BB, and good grain quality in China

Cao et al., 2003

AR32‐19‐3‐3, AR32‐19‐3‐4, AR32‐4‐3‐1, and AR32‐4‐
58‐2, all resistant to BB, showed 18–31% yield

advantage over PSB Rc28 in Philippines

Leung et al., 2004

BB resistant hybrids, Guofeng No 2 and Hybrid II You

218 released in China, produced 11–19% greater yield

over Shanyou

Leung et al., 2004

PR 106‐P2 and PR 106‐P9, both resistant to BB, showed

18–22% yield increase over PR 106 in India

Leung et al., 2004

Blast

CS 2, CS 11, CS 18, CS 35, CS 36, CS 62, and CS 67

combining resistance to blast and good agronomic

traits developed, with potential to replace CR 203 in

Vietnam

http://www.Vtc.agnet.org/library/

article/rh2003013a.html

Soybean

Oil quality

Vistive low‐linolenic soybean developed by Monsanto

and released for cultivation in United States

http://www.monsanto.com

Wheat

Aluminum toxicity

Advanced backcross lines tolerant to aluminum

developed

http://www.dfid‐psp.org/ccstudio/
publications/annualreport/

2004_aluminium.pdf

Bread‐making quality

A wheat cultivar, Burnside, with CWES (Canadian

Western Extra Strong) traits developed in Canada

Radovanovic and Cloutier, 2003)

Fusarium head blight (FHB)

NILs containing major 3BS QTL and resistant to FHB

developed in United States

Zhou et al., 2003b

Rust

Resistance to stem (Sr39) and leaf rust (Lr35)

incorporated into ‘‘Canada Prairie Spring’’ and

‘‘Canada Western Extra Strong’’ classes of wheat lines

in Canada

Gold et al., 1999

Multiple resistance to pest, fungal and viral diseases þ grain quality

Several germplasm lines possessing resistance to pest,

fungal, and viral diseases, and those with improved

grain quality developed in United States

http://maswheat.ucdavis.edu
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released for commercial cultivation. Two rice cultivars with MAS‐derived
improvements in amylose content are grown in United States. MAS has also

been successful in the development of disease‐resistant hybrids. For example,

superior rice hybrids with resistance to bacterial blight in China and pearl

millet hybrid with resistance to downy mildew have been released for cultiva-

tion. In addition, many advanced lines and improved germplasm combining

multiple resistances to diseases or with improved seed quality have been bred,

which are now being evaluated in several countries prior to their release as

new cultivars (Table XV). Marker‐assisted backcross breeding and marker‐
aided gene pyramiding have been the most frequently used molecular breed-

ing methods to aid the introgression of disease resistance or quality traits into

improved genetic backgrounds. MAS has also been used in wide crosses to

minimize the linkage drag associated with beneficial traits (see Section IV.D).

Although there are only small numbers of reports regarding successful

use of MAS in plant breeding, the technology has nevertheless demonstrated

its potential as a tool to support conventional genetic enhancement of

crops. Large‐scale adoption of MAS technology has already begun for incor-

porating disease resistance or grain quality in rice (http://www.uark.edu/ua/

ricecap/index.htm), wheat (http://maswheat.ucdavis.edu), barley (http://www.

barley cap.org / ), and common bean (Kell y et al. , 2003 ; Miklas et al. , 2006a)

in United States. For example, MAS wheat consortium has developed pro-

tocols for more than 40 molecular markers for resistance genes and quality

traits and usedMABC to incorporate 27 diVerent disease‐ and pest‐resistance
genes and 20 alleles with beneficial eVects on bread making and pasta quality

into �180 lines adapted to the primary US production regions (http://

maswheat.ucdavis.edu/). Rice researchers in China are using MAS to com-

bine resistance to diseases and improved grain quality in some of their best‐
performing hybrids (Leung et al., 2004). MAS is being used to combine

disease resistance and/or grain quality in wheat and common bean in Canada

(Radovanovic andCloutier, 2003; http://www.ontariobeans.on.ca.ppyramiding

DiseaseResistanceGenes.html) and for improving wheat, barley, and rice

in Australia (Christopher et al., 2004; Eagles et al., 2001; McLauchlan

et al., 2001; Ogbonnaya et al., 2001; Paris et al., 2003; Schmierer et al., 2004;

http://www.cdesign.com.au/bts2005/pages/papers/134venkatangappaS.pdf).

CIMMYT wheat breeding program has already initiated marker‐assisted
breeding to introgress gene(s) for resistance to cereal cyst and root lesion

nematodes, boron toxicity, Barley yellow dwarf virus, scab, rust, and crown

rot as well using Ph1b to promote pairing between alien and wheat chromo-

somes to accelerate gene transfer from alien species to wheat. Moreover, it is

expected that many more successful applications do exist but remain within

the confidentiality restriction of commercial breeding companies around the

world.

Developing countries are not left behind in the use of MAS in crop

breeding programs. For example, researchers from the Indian Council of

http://www.uark.edu/ua/ricecap/index.htm
http://www.uark.edu/ua/ricecap/index.htm
http://maswheat.ucdavis.edu
http://www.barleycap.org/
http://www.barleycap.org/
http://maswheat.ucdavis.edu/
http://maswheat.ucdavis.edu/
http://www.ontariobeans.on.ca.ppyramidingDiseaseResistanceGenes.html
http://www.ontariobeans.on.ca.ppyramidingDiseaseResistanceGenes.html
http://www.cdesign.com.au/bts2005/pages/papers/134venkatangappaS.pdf
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Agricultural Research are collaborating with their colleagues at IRRI,

CIMMYT, and ICRISAT on the use of MAS in cereal and legume breeding.

In fact, the first downy mildew resistant pearl millet hybrid (HHB 67‐2)
released in India was bred using MAS by improving the male parent with

improved resistance to downy mildew (Hash, 2005). India is testing marker‐
derived submergence‐tolerant lines (Xu et al., 2006), developed through

collaboration with IRRI, for their adaptation to deepwater paddy cultiva-

tion in eastern India. Development of submergence‐tolerant cultivars using
MAS has already been reported from Thailand (Siangliw et al., 2003), and

work is in progress to introduce this trait in cultivars adapted in Bangladesh,

Laos, the Philippines, and Vietnam. The ultimate goal of this collaboration

with IRRI is the development of improved rice inbred and hybrid cultivars

with good grain quality and multiple resistances to pests and diseases. MAS‐
derived rice cultivars are already being grown in Indonesia. These marker‐
aided rice cultivars and hybrids have produced on average 11–34% increased

yield over popular inbred and hybrid cultivars in Asian countries. This has

led to an estimated increase in grain harvest of 0.8 million Mt (worth US

$20.5 million) of paddy rice per cropping season in India, Indonesia, the

Philippines, and China as a result of the growing bacterial blight resistance

present in these inbred and hybrid cultivars (Leung et al., 2004). Many

national programs from South America are cooperating with CIAT and

advanced research institutes in United States to improve the genetic potential

of common bean, the most widely grown pulse crop in that region, by using

MAS (Miklas et al., 2006a).
VII. APPROACHES TO ENHANCE THE EFFICIENCY
AND SCOPE OF MOLECULAR BREEDING
A. STUDYING THE MOLECULAR BASIS OF HETEROSIS

Heterosis is defined as the superior performance of an F1 hybrid as com-

pared with its parents. Hybrid cultivars have made significant contribution to

world food supply (Duvick, 1999). In the literature, dominance, overdomi-

nance, and epistasis have been implicated as the genetic basis of superior

hybrid performance. The dominance model attributes increased vigor to

the action of favorable dominant alleles from both parents combined in the

hybrid, whereas the overdominance model postulates the existence of loci

where the heterozygous state is superior to either homozygote (Xiao et al.,

1995; Xu, 2003; Yu et al., 1997). Evidence for the role of epistasis (interaction

of the favorable alleles at diVerent loci contributed by the two parents)

in hy brid vigor have also been report ed ( Li et al. , 2001b ; Luo et a l., 2001;
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Stuber et al., 1992; Xu, 2003). The genetic basis of heterosis, heterotic

groups, hybrid prediction and hybrid performance, relationships between

heterozygosity and genetic distance with hybrid performance and heterosis,

and use of MAS in hybrid breeding have been discussed elsewhere

(Xu, 2003).

The complex nature of heterosis makes it diYcult to partition into indi-

vidual components because of the epistatic interactions among segregating

loci throughout the genome (Li et al., 2001b). To assess the importance of

loci with overdominant (ODO) eVects in expression of heterosis, Semel et al.

(2006) employed NIL, carrying single marker‐defined chromosome segments

from distantly related wild species Solanum pennellii to partition heterosis

into defined genomic regions, eliminating a major part of the genome‐wide
epistasis. They detected 841 QTL for 35 diverse traits. NILs showing greater

reproductive fitness are characterized by the prevalence of ODO QTL, which

were virtually absent for the nonreproductive traits. Overdominance results

from true overdominance due to allelic interactions of a single gene or from

pseudo‐overdominance involving linked loci with dominant alleles in repul-

sion. In their study, although they detected dominant and recessive QTL for

all phenotypic traits, overdominance only for the reproductive traits indi-

cates that pseudo‐overdominance is unlikely to explain heterosis in NIL, thus

they favor the true ODOmodel, a single functional Mendelian locus involved

in heterosis.

Milborrow (1998) proposed a mechanistic, biochemical interpretation of

the superior performance of F1 hybrids in comparison to their homozygous

parents. Their interpretation is based on the concept that growth is restricted

below the potential maximum by internal genetic factors. In this model, the

hybrid vigor is caused by a slight reduction in the strictness of this control

mechanism in heterozygotes compared with homozygotes, particularly with

respect to metabolism and growth processes. This eVect is believed to be

mediated by the presence of changes in regulatory features of certain loci

when in the heterozygote state.

Among the cereals, heterosis has been exploited in maize, rice, sorghum,

and pearl millet to produce superior yielding hybrids that by far dominate the

global acreage for each crop. For example, about 95% of US maize acreage is

planted to hybrids that exhibit a 15% yield advantage relative to the best

open‐pollinated cultivars (Duvick, 1999). A popular hybrid rice cultivar in

China (LYP9) produces 20–30% more grains per hectare than other hybrids

or inbred rice cultivars (Lu and Zhou, 2000). More recently, an ‘‘immorta-

lized F2’’ population was generated by randomly permutated intermating of

240 RILs from a cross between the parents of Shanyou 63, another widely

cultivated hybrid rice cultivar in China. These lines were field evaluated over

2 years and genotyped using 231 polymorphic molecular markers covering

the entire rice genome. From this analysis, 33 loci were detected that
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contributed to heterotic eVects in grain yield, tillers per plant, grains per

panicle, and 1000‐grain weight (Hua et al., 2003). The heterotic loci showed

little overlap with QTL previously identified for the same traits. Thus, in

contrast to the Milborrow model (Milborrow, 1998), it appears that in rice

there are unique loci conditioning heterosis. Moreover, all kinds of genetic

eVects were observed in this study to contribute to heterosis, including

partial‐, full‐, and overdominance at the single‐locus level and all three

forms of digenic epistatic interactions (additive by additive, dominance by

dominance, and additive by dominance). Heterosis eVects at the single‐locus
level, in combination with the marginal advantages of double heterozygotes

caused by dominance interaction at the two‐loci level, adequately explain the

genetic basis of heterosis in Shanyou 3. Using serial analysis of gene expres-

sion (SAGE), Bao et al. (2005) surveyed transcriptomes in panicles, leaves,

and roots of a super‐hybrid rice (LYP9) in comparison to its parental inbred

cultivar genotypes (93‐11 and PA64s). They identified 595 upregulated and

25 downregulated tags in LYP9 that were related to enhancing carbon‐ and
nitrogen‐assimilation, including photosynthesis in leaves, nitrogen uptake in

roots, and rapid growth in both roots and panicles. This adds a crucial new

set of observations for understanding the molecular mechanisms of heterosis

and gene regulation networks in rice. In this study, they found massive

complementation at the transcript level that further suggests that the under-

lying mechanisms of heterosis may not be as simple as have been reported

from studies of a small number of genes (Birchler et al., 2003).

Previous studies using multiple hybrids and their corresponding parents

revealed that some diVerential gene expression patterns are significantly

correlated with heterosis in wheat (Ni et al., 2000, 2002; Sun et al., 1999,

2004; Wu et al., 2003). However, information on systematic identification

and on characterization of diVerentially expressed genes is limited. Yao et al.

(2005) used an interspecific hybrid between common wheat (Triticum aesti-

vum L., 2n ¼ 42, AABBDD) line 3338 and spelt (Triticum spelta L., 2n ¼ 42,

AABBDD) line 2463, which is highly heterotic both for aerial growth and

root related traits. In their research, they included an expression assay using

modified suppression subtractive hybridization (SSH) to generate four sub-

tracted cDNA libraries between the wheat hybrid and its parental genotypes.

Of the 748 nonredundant cDNAs obtained, 465 cDNAs had high sequence

similarity to GenBank entries in diverse functional categories, such as me-

tabolism, cell growth and maintenance, signal transduction, photosynthesis,

response to stress, transcription regulation, and others. They further con-

firmed the expression patterns of 68.2% SSH‐derived cDNAs by reverse

Northern blot, while semiquantitative RT‐PCR exhibited similar results

(72.2%). This suggests that the genes diVerentially expressed between hybrids

and their parents are involved in diverse physiological pathways, which may

contribute to heterosis in wheat.
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Maize inbred lines B73 and Mo17 produce a heterotic F1 hybrid. Based on

analysis with 13,999 cDNA microarrays, Swanson‐Wagner et al. (2006) com-

pared global patterns of gene expression in seedlings of the hybrid (B73 �
Mo17)with those of its parental genotypes. A total of 1367ESTswere observed

to be significantly diVerentially expressed, using an estimated 15% FDR as

cutoV. All possible modes of gene action were observed, including additivity,

high‐ and low‐parent dominance, underdominance, and overdominance.

A total of 1062 of the 1367 ESTs exhibited expression patterns that are not

statistically distinguishable from additivity, while the remaining 305 ESTs

exhibited nonadditive gene expression. About 181 of the 305 nonadditive

ESTs exhibited high parent dominance, 23 ESTs showed low parent domi-

nance, while 44 ESTs displayed underdominance or overdominance. These

results suggest that multiple genetic mechanisms, including overdominance,

contribute to heterosis. This contrasts with previous studies that reported

heterosis was due to gene action of only a small set of maize genes (Auger

et al., 2005; Guo et al., 2004; Song and Messing, 2003). Further analysis of

allelic variation in gene expression in the maize hybrid and its parental lines

(B73 andMo17) identified a subset of 27 genes that are diVerentially expressed
in parental lines. When the transcriptional contribution of each allele from the

inbred line was analyzed in the hybrid, the majority of the diVerential expres-
sion was observed to be due to cis‐regulatory variation, and not due to diVer-
ences in trans‐acting regulatory factors. This suggests a predominance of

additive expression and a lack of epistatic eVects, as genes subject to cis‐
regulatory variation are expected to be expressed at mid‐parent, or additive,
levels in the hybrids (Stuper and Springer, 2006). Scheuring et al. (2006) used a

57,000 maize gene‐specific long‐oligonucleotide microarray containing about

32,000 genes to study the diVerential gene expression between a maize hybrid

and its parental genotypes (B73 andMo17). Preliminary analysis revealed that

at least 800 genes were expressed at two‐ to ten‐fold higher levels in the hybrid

than the parent genotypes. Using Massively Parallel Signature Sequencing

(MPSS), an open‐ended mRNA profiling technology, of nearly 400 allelic

signature tag pairs, Yang et al. (2006) found that 60% of the genes expressed

in meristems of hybrid were significantly diVerent in allele‐specific transcript

level as compared to the parental genotypes. This suggests an abundance of cis‐
regulatory polymorphisms aVecting hybridmeristem gene expression. Further-

more, when comparing the expression of the same allele in the hybrid versus

inbred parents, they found 50% of the genes expressed at a significantly diVer-
ent level. Such diVerences in expression are likely attributed to the eVect of
trans‐acting factors that diVer between the hybrid and inbreds. While cis‐
regulatory variation predicts additive expression, trans‐regulation may result

in nonadditive expression in the hybrid. Thus, studying the eVect of transcript
regulation at an allele‐specific level provides a diVerent level of understanding
of gene regulation than focusing on overall expression in the hybrid.
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With the vast genomic and technological resources available in Arabidop-

sis thaliana and the occurrence of heterosis in many traits (Meyer et al., 2004

and references therein; Syed and Chen, 2005), Arabidopsis may be the best

model for investigating the genetic basis of heterosis (Jansen and Nap, 2001).

However, it is heterosis in yield which holds the greatest promise in plant

breeding; thus, eVorts must also be focused on validating and/or translating

findings in Arabidopsis for greater understanding, and ultimately ability to

manipulate, the genetic basis of heterosis in crop plants.
B. FINE‐MAPPING, CLONING, AND PYRAMIDING OF QTL ASSOCIATED

WITH IMPROVED AGRONOMIC TRAITS

Many agronomically important traits including yield are controlled by a

few to a large number of genes (QTL), each with varying eVects and diVerent
levels of GEI, which together confer a trait with continuous phenotypic

variation. With the development of high‐density genetic linkage maps

based on DNA markers, it is possible to map QTL of large eVect with a

high level of resolution (Paterson et al., 1988). However, it is diYcult to

identify all genes underlying QTL because the eVects of many are relatively

small and easily confounded by environmental conditions. Selfed lines from

backcrosses (advanced backcross lines) are a common method of fine‐
mapping of QTL, where phenotypic diVerences can be more readily identified

without the confounding eVects of diverse segregating backgrounds (Darvasi

and Soller, 1995; Graham et al., 1997; Saito et al., 2001; Yamamoto et al.,

1998). Alternately, NIL provides the means to dissect complex traits into

simple Mendelian factors. Each NIL varies for a defined genomic segment

containing a target QTL in an otherwise uniform genetic background. NILs

are produced by repeatedly backcrossing a donor parent with a recurrent

parent in combination with MAS. Comparing the phenotypes of NIL with

those of the recurrent and donor parents permits an accurate evaluation of

the eVects of the target QTL in an adapted background without the confound

factor of interaction with other segregating loci. Developing NIL has the

added advantage of providing QTL ILs (with elite agronomic backgrounds)

with the minimum of deleterious alleles in the vicinity of target QTL (linkage

drag) which can then be used in marker‐assisted pyramiding of QTL with

diVerent beneficial eVects. NILs are also useful resources for developing large

mapping populations for fine‐mapping and map‐based cloning of specific

QTL. Thus, NILs are a uniquely powerful means of linking marker identifi-

cation, QTL gene isolation, and advanced product development. ILs can also

be used for fine‐mapping of QTL (Eshed and Zamir, 1995). Peleman et al.

(2005) proposed a method to fine‐map multiple QTL in a single population:

QTL are mapped in a relatively small population, and a large population of
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1000 plants or more is used to derive QTL isogenic recombinants (QIRs).

This reduces the number of lines required for phenotyping. LD methods for

fine‐mapping may also oVer improved accuracy of QTL detection (Bink and

Meuwissen, 2004; Grapes et al., 2004).

There a very large number of reports in the literature regarding the

identification of putative QTL for traits of agricultural importance in many

crops. However, only a few studies have succeeded in fine‐mapping and

cloning of those QTL. The earliest examples of successful QTL cloning

include a major fruit‐weight QTL of tomato (fw2.2), delimited to a segment

of cloned DNA (<150 kb) (Alpert and Tanksley, 1996), and QTL for tomato

sugar content (Brix9‐2‐5) to a 484‐bp region within an invertase gene (Lin‐5)
(Fridman et al., 2000). With advances made in rice genomics, several QTL

associated with agronomic traits have now also been cloned, for example,

four QTL for heading date—Hd1, Hd3a, Hd6, and Ehd1 (Doi et al., 2004;

Kojima et al., 2002; Takahashi et al., 2001; Yano et al., 2000); QTL for grain

number (Gn1a) and grain size (GS3) (Ashikari et al., 2005; Fan et al., 2006);

QTL for salt tolerance (SKC1) (Ren et al., 2005); QTL for regeneration

ability (PSR1) (Nishimura et al., 2005); and QTL for shattering (Sh4 and

qSH1) (Konishi et al., 2006; Li et al., 2006b). Hd1, Hd3a, and Hd6 encode

orthologues of CONSTANS (CO) and Flowering locus T (FT) and the

a‐subunit of casein kinase 2 (CK2), which are well‐characterized factors for

flowering or the circadian clock in Arabidopsis (Hayama and Coupland,

2004; Izawa et al., 2003). However, rice Hd1 promotes flowering under

short‐day lengths, while Arabidopsis CO promotes flowering in long‐day
conditions (Izawa et al., 2003). Gn1a encodes a cytokinin oxidase/dehydro-

genase (OsCKX2), an enzyme that degrades the phytohormone cytokinin.

Reduced expression of OsCKX2 causes cytokinin accumulation in inflores-

cence meristems, which increases the number of reproductive organs, result-

ing in higher grain yield (Ashikari et al., 2005). GS3 encodes a putative

transmembrane protein, and a mutation in this gene induces large grain

size, suggesting that GS3 might function as a negative regulator for grain

development (Fan et al., 2006). SKC1 encodes a sodium transporter involved

in regulating Kþ/Naþ homeostasis under salt stress (Ren et al., 2005). Sh4

encodes an unknown protein that when mutated inhibits the normal devel-

opment of an abscission layer, necessary for shattering (Li et al., 2006b),

similarly an SNP in the 5́ regulatory region of the qSH1 gene causes loss of

shattering owing to the absence of abscission layer formation in japonica rice

(Konishi et al., 2006).

The QTL for grain weight, gw3.1 and gw8.1, have been fine‐mapped in rice,

the former in the pericentromeric region of chromosome 3 (93.8‐kb region)

(Li et al., 2004a) while the latter on chromosome 8 to about 306.4‐kb region

between markers RM23201.CNR151 and RM30000.CNR99 (Xie et al.,

2006). The former locus has also been fine‐mapped simultaneously by
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three other g roups, an d it has be en cloned using map ‐ based cloning ( Fan
et al ., 2006 ). Similarly , another QTL influe ncing the num ber of grains per

pan icle (g pa7 ) has been success fully delim ited to a 35 ‐ kb ge nome region on

rice chromosom e 7 ( Tian et al. , 2006a ). Andaya an d Tai (2006) have fine ‐
mappe d a major QTL, qCTS 12 , for seedlin g cold tolerance in rice and

success fully delimit ed it to a region of abou t 55 kb on the short arm of

chromo some 12, wi th OsG STZ1 and OsG STZ2 the most likel y candidat es

gene(s ) for qCTS12 .

VRN1 and VRN2 are the main gen es involv ed in the ve rnalizatio n response

in diploi d wheat T. monoc occum (Du bcovsky e t al. , 1998; Tran quilli and

Dubco vsky, 1999 ). However, vernal ization in hexaploi d wheat ( T. aestivum )

is control led by the VRN1 locus ( Law et al. , 1975; Tran quilli and Du bcovsky,

1999 ). VRN1 is closel y linked to MAD S‐ box ge nes AP1 and AGL G1 (si milar

to Ara bidops is meri stem genes AP1 and AG L2, respect ively) in a 0.3 ‐ cM
inter val flan ked by genes Cystei ne and Cytochro me B5. AP1 is a more likel y

cand idate for VRN1 than AGL G1 ( Yan et al. , 2003 ). VRN2 ha s express ion

patte rns oppos ite to that of VRN1 , and is locat ed 0.04 cM from ZCCT1 , the

most likel y can didate gene for VRN2 (Yan et al. , 2004a ). Fusari um head

blight (FHB) is a devast ating diseas e of wheat worl dwide. W aldron et al.

(1999) de tected a major QTL , Qfh s.ndsu ‐ 3BS , con tributing to FHB resistance

in Sumai 3 and locat ed in the delet ion bin 3BS ( Liu and And erson, 2003 ).

Wh en constr ucting a fine genetic map of the Qfhs.nd su ‐ 3BS region that
spann ed 6.3 cM, Liu et al. (2006) placed Qfh s.ndsu ‐ 3BS into a 1.2‐ cM region

flan ked by STS3B ‐ 189 and STS3B ‐ 206, an d redesign ated it as Fhb1 .
Only five major QTL diVerentiate maize from teosinte (Doebley and Stec,

1993). Just two QTL confer the major morphological diVerences between

maize and teosinte, which have been dissected into single Mendelian loci:

teosinte branched1 (tb1) (Doebley et al., 1995, 1997; Wang et al., 1999) and

teosinte glume architecture (tga1) (Dorweiler et al., 1993; Wang et al., 2005b).

The gene tb1 suppresses lateral branching (leading to apical dominance),

whereas tga1 aVects the hardness of the seed testa (hard casing that envelops

the seed in its ancestor teosinte); both the genes were important in the

evolution of teosinte to the agronomically suitable maize crop. Vgt1 is a

QTL involved in the control of the transition of the apical meristem from the

vegetative to the reproductive phase (flowering) that was initially mapped to

a region of 5 cM on chromosome bin 8.05 (Vladutu et al., 1999). Using PCR‐
based assays for markers flanking Vgt1 and screening of NIL homozygous

for independent crossovers near the QTL, Salvi et al. (2002) conclude that

Vgt1 is in a 1.3‐cM region between AFLP13 and AFLP14, ca. 0.3 cM away

from AFLP 14.

For QTL with small eVects, fine‐scale mapping and positional cloning will

be very diYcult in the absence of whole‐genome sequence. However, in these

cases, reverse genetics may oVer a solution, through functional genomic
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analysis of candidate genes that underlie QTL. For example, Liu et al.

(2004b) identified five candidate defense response (DR) genes that colocated

with QTL for resistance to blast disease and were associated with level of

blast resistance.

QTL pyramiding is an important strategy for rebuilding the outputs from

reductionist genomic research into whole traits of value for crop improve-

ment. Once the desirable QTL have been detected, NIL are generated for

each QTL in a common elite genetic background, and the eVect of each QTL

individually evaluated. The selected NIL containing the most important

QTL for the target trait are subjected to pair‐wise crosses to pyramid two

or more QTL for one or more target traits. For example, in rice QTL for

increased grain number (Gn1) and QTL for reduced plant height [Ph1(sd1)]

were pyramided in the Koshihikari background producing a 23% increase

in grain yield while reducing the plant height by 20% compared with

Koshihikari (Ashikari et al., 2005).

Dissecting QTL to simple Mendelian factors, often through reduction to

component traits, and developing NIL for evaluation, selection, and

subsequent use in marker‐assisted pyramiding present an eVective strategy

for molecular breeding of complex traits.
C. EXPRESSION QTL MAPPING

Traditional genetic mapping has largely focused on the identification of

loci aVecting one, or at most a few, complex traits. Dissection of the genetics

underlying gene expression combines large‐scale microarray analyses of

expression profiles and conventional QTL mapping of the same segregating

population. In this analysis, the expression profiling is considered a quanti-

tative phenotype aVected by multiple genes and environmental factors

(Jansen and Nap, 2001). This approach has facilitated the identification of

genomic regions [gene expression QTL (eQTL)] associated with transcript

variation in coregulated genes and, when correlated with phenotypic data

from a quantitative character, has successfully identified candidate genes by

colocalizing gene eQTL and trait QTL (Brem et al., 2002; Klose et al., 2002;

Rockman and Kruglyak, 2006; Schadt et al., 2003; Wayne and Mclntyre,

2002).

The power of a genetic mapping study depends on the heritability of the

trait, the number of individuals included in the analysis, and the genetic

dissimilarity among them. In experiments involving microarrays and com-

plex physiological assays, phenotyping can be expensive and time consuming

and may impose limits on the sample size. A random selection of individuals

may not provide suYcient power to detect linkage until a large sample size is

reached. Jin et al. (2004) developed an algorithm for selecting a subset of
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individuals solely on the basis of genotype data that can substantially im-

prove sensitivity compared to a random sample of the same size. The selec-

tive phenotyping method involves preferentially selecting individuals to

maximize their genotypic dissimilarity while also representing phenotyping

extremes. Selective phenotyping is most eVective when prior knowledge of

the genetic architecture allows us to focus on specific genetic regions. How-

ever, it can also provide modest improvements in eYciency when applied on a

whole‐genome basis. Selective phenotyping does not reduce the eYciency of

mapping as compared to a random sample in regions that have not been

exposed to strong selection pressure. In contrast to selective genotyping,

inferences based solely on a selectively phenotyped population of individuals

are representative of the whole population.

Kendziorski et al. (2006) demonstrated the deficiencies of using conven-

tional single or multiple QTL analyses for the eQTL approach. Instead, they

proposed a mixture over markers (MOM) model that shares information

across both markers and transcripts. Results from simulation studies indicate

that the MOM model is the best at controlling false‐positive associations

without sacrificing power of detection. Plants exhibit massive changes in gene

expression during morphophysiological and reproductive development as

well when exposed to a range of biotic and abiotic stresses. These have

been observed as diVerences in transcriptional profiles in rice (Bao et al.,

2005; Matsumura et al., 2003; Rabbani et al., 2003; Tang et al., 2005; Wasaki

et al., 2006; Yang et al., 2004; Zhu et al., 2003), maize (Kollipara et al., 2002;

Yu and Setter, 2003; Zinselmeier et al., 2002), wheat (Gulick et al., 2005;

Wilson et al., 2004), barley (Ozturk et al., 2002; Ueda et al., 2002, 2004;Walia

et al., 2006), chickpea (Boominathan et al., 2004), potato (Nielsen et al.,

2005; Rensink et al., 2005), banana (Coemans et al., 2005), and cassava

(Fregene et al., 2004). Variation in transcript abundance is now being asso-

ciated with gene expression using eQTL analysis in an increasing number of

crops. For example, Kirst et al. (2004) dissected the genetic and metabolic

network underlying variation in growth in an interspecific backcross popu-

lation of eucalyptus. QTL analysis of transcript levels of lignin‐related genes

showed that their mRNA abundance is regulated by two genetic loci, coor-

dinating genetic control of lignin biosynthesis. These two loci colocalize with

QTL for growth, suggesting that the same genomic regions are regulating

growth, and lignin content and composition. Using a high‐density oligonu-

cleotide array and phenotypically divergent rice accessions and their trans-

gressive segregants, Hazen et al. (2005) measured the expression of

approximately half of the genes in rice (�21,000) to associate changes in

stress‐regulated gene expression with QTL for osmotic adjustment (OA),

which is a known mechanism of drought tolerance. A total of 662 transcripts

were observed to be expressed diVerentially between the parental lines. Only

12 genes were induced in the low OA parent (CT9993) at moderate
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dehydration stress levels, while over 200 genes were induced in the high‐OA

parent (IR62266). Sixty‐nine genes were upregulated in all high‐OA lines and

nine of those genes were not induced in any of the low‐OA lines, of which

four could be annotated as followings: sucrose synthase, a pore protein, a

heat shock protein, and an LEA protein. Previous conventional QTL

mapping using the same two rice accessions showed that the parental geno-

types diVered for five of the OA QTL, that two of these QTL are syntenic

with other cereal drought stress QTL (Zhang et al., 2001), and a major OA

QTL in the same genomic region on rice chromosome 7 is also reported in a

diVerent cross (Lilley et al., 1996). Of the 3954 probes that correspond to this

part of the chromosome, few showed a diVerential expression pattern be-

tween the high‐ and low‐OA lines. Thus, these preliminary results demon-

strate the power of integrating quantitative analysis of gene expression data

with genetic map information to identify genetic and metabolic networks

that would not have been identified through conventional QTL analysis.
D. SIMULATION AND MODELING OF MAS

Some of the most agronomically and economically important traits in

most crops have quantitative phenotypic variation, are under polygenic

control, and are significantly aVected by the environment. Whole‐plant phys-
iology modeling is becoming an increasingly important tool for partitioning

complex traits into their components and understanding how those compo-

nents interact with each other and contribute to the overall trait expression in

diVerent environmental conditions. With a commitment to genomic analysis

of component traits, whole‐plant physiology modeling provides a critical link

between molecular genetics and crop improvement. Crop models with gener-

ic approaches to underlying physiological processes (Wang et al., 2002)

provide a means to link phenotype and genotype, through simulation analy-

sis, of an in silico or virtual plant (Tardieu, 2003). In this way, it is possible to

dissect the physiological basis of adaptive traits and determine their control

at whole‐plant level through modeling, and then to use simulation analysis as

a predictive decision‐support tool for molecular breeders. The substantial

progress in ‘‘omics’’ technologies for high‐throughput data generation allows

researchers to create comprehensive datasets on the mechanisms underlying

plant growth and plant responses to perturbation. A plant requires informa-

tion about its environment and interaction with that environment and uses

that information to dictate its adaptive responses that result in the plant

phenotype. Significant endeavors in the field of whole‐plant modeling are

now being directed at understanding genetic regulation and aiding crop

improvement (Chapman et al., 2002, 2003; Cooper et al., 2002; Hammer

et al., 2002; Wang et al., 2004, 2005c; Yin et al., 2003, 2004).
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QTLmapping allows the dissection of a phenotype into underlying genetic

factors, but it has limited ability to predict how QTL detected in one set

of environmental factors or management practices will behave in a new set of

conditions (Stratton, 1998). Ecophysiological modeling provides an insight

into the factors influencing GEI (Tardieu, 2003), but it does help define the

genetic basis for diVerences in response to environmental changes. Combin-

ing ecophysiological modeling with genetic mapping provides the opportuni-

ty for creating a QTL‐based crop physiology model that could be powerful

tool for resolving the genetic basis of complex environment‐dependent yield‐
related traits. For example, using this approach, researchers predicted specific

leaf area in barley (Yin et al., 1999), stay‐green response to nitrogen in

sorghum (Borrell et al., 2001), leaf‐growth response to temperature and

water deficit in maize (Reymond et al., 2003), and preflowering duration in

barley (Yin et al., 2005). Hammer et al. (2005) explored whether physiological

dissection and integrative modeling of complex traits could link the complex-

ity of the phenotype to underlying genetic systems in away that could enhance

the power of molecular breeding strategies in sorghum. This approach was

applied to four key adaptive traits (phenology, osmotic adjustment, transpi-

ration eYciency, and stay‐green) using 547 location‐season combinations and

4235 genotypic expression states derived from allelic variation at 15 loci for

each of the 547 environments. The environmental characterization and phys-

iological knowledge helped to dissect and explain gene and environment

context dependencies in the data and based on estimated gene eVects to

simulate a range of MAS breeding strategies. By removing gene and environ-

ment context dependencies, it was possible to devise breeding strategies that

generated an enhanced rate of yield improvement over several cycles of

selection. Similarly, Messina et al. (2006) combined an ecophysiological

model (CROPGRO‐Soybean) with a linear model that predicted cultivar‐
specific parameters as function of E‐loci. This approach predicted 75% of the

variance in time to maturity and 54% of the variance in yield. This demon-

strates that agricultural genomics data can be eVectively used for predicting

cultivar performance and refining crop breeding systems.

Innovative simulation models bridge the gap between molecular and

conventional plant breeding and will inform both strategic research and

tactical breeding decisions (www.generationcp.org/sccv10/sccv10_upload/

modelling_links.pdf). The CGIAR Generation Challenge Program (GCP)

is supporting several projects on whole‐plant physiology modeling, QTL� E

analysis, and simulation of molecular breeding programs that will collectively

link physiological and genetic models toward the optimization of marker‐
assisted breeding systems for drought tolerance in cereals. Simulation models

integrate molecular information about interaction between genes and simpler

traits to allow realistic predictions for more complex traits such as drought

tolerance and yield. QuGene software platform (Podlich and Cooper, 1998;

http://www.generationcp.org/sccv10/sccv10_upload/modelling_links.pdf
http://www.generationcp.org/sccv10/sccv10_upload/modelling_links.pdf
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http://www.uniquest.com.au) defines gene eVects and builds breeding mod-

ules to compare breeding eYciencies. For example, using QuGene software,

researchers in Australia developed a breeding module for sorghum incorpor-

ating physiological constraints that were implemented by linking QuGene to

the Agricultural Production System Simulator (APSIM) cropping systems

model (Keating et al., 2003; http://www.apsru.gov.au), thus providing a

powerful set of programs that can simulate crop breeding line performance

in a given environment and extrapolate the eVects of long‐term selection over

many breeding cycles and seasons. Another GCP supported project links

QuGene/APSIM with QTL data on maize leaf growth under drought. These

projects aim to deliver modeling tools into the hands of molecular breeders

and other researchers to extend the scope and impact of their use, particular-

ly with respect to molecular breeding of complex traits such as drought

tolerance.

Developing and implementing a design‐led breeding system for complex

traits require enhanced attention to precision phenotyping, ecophysiological

modeling, and marker validation to ensure robustness and selective power.

These approaches require the iterative and systemic integration of a range of

scientific disciplines, including modelers, physiologists, geneticists, breeders,

and molecular biologists. Nevertheless, the first preliminary studies reviewed

in this section suggest that a new paradigm in knowledge‐led design‐driven
plant breeding is a feasible option and that for the first time genomics may

finally realize its potential impact on breeding complex traits is increasingly

likely.
VIII. THE ROLE OF COMPUTATIONAL SYSTEMS IN
MOLECULAR BREEDING PROGRAMS
EVective marker‐aided breeding requires the balance of many diverse

elements in order to provide the best compromise between time, cost, and

genetic gain:

� Identify beneficial genetic variation and develop robust marker‐trait
associations

� EVectively manage and manipulate large amounts of genotype, pedigree,

and phenotype data

� Select desirable recombinants through an optimum combination (in time

and space) of phenotypic and genotypic data

� Develop breeding systems that minimize population sizes, number of gen-

erations, and overall costs while maximizing genetic gain for traditional

and novel target traits

http://www.uniquest.com.au
http://www.apsru.gov.au
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In general , MAS works best with simp ly inheri ted marker s that are insi de

or flanking marker s that are in proximity to the gen etic factors aVecti ng
mono genic, oligog enic, and polygeni c traits. The journey from the

phe notyping ‐ and‐ genotypi ng of individu als from gen etic popul ations to the

identi ficatio n of marker ‐ trait associ ations and onto the ap plication of mar-

kers in molec ular breeding depen ds on the sequenti al use of a num ber of

decisi on‐ suppo rt tools that facilitate commun ication between genomi cs

scient ists, geneti cists, bioinf ormat icians, trai t specia lists, and breeders .

In this section, we pro vide an overvie w of key decision ‐ sup port tools for
assi sting germplasm evaluation , breeding populati on man agement, GEI,

geneti c map co nstruction, marker ‐ trait linkag e and associa tion analysis,

marker ‐ assisted ap plication, breeding system design and sim ulation, infor -

matio n man agement, and other integ rated tools needed to sup port molec ular

breeding program s (Tabl e XVI ).
A. GERMPLASM EVALUATION

Marker ‐ assi sted germpl asm evaluat ion (MAGE ) aims to complem ent

phe notypic evaluat ion by helping defin e the archit ecture of geneti c resourc es

and by identifyi ng germplasm that contai ns alleles associated with traits of

econ omic importance. Mo lecular marker s can be used to for characterization

based on genes, genotypes, or genomes, which provide more accurate and

detailed information than classical phenotypic or passport data. M any fea-

tures reveal ed by molec ular marker s, such as uniqu e alleles, allele frequen-

cies, and heteroz ygosity at marker loci, mir ror the genetic structure of

germpl asm resourc es an d wi ll lead to the identi ficatio n of useful genes an d

their transfer into wel l‐adapted cultivars. MAGE will play an important role

in acquisition, distribution, maintenance, and use of germplasm (Bretting

and Widrlechner, 1995; Xu, 2003). During germplasm evaluation, molecular

markers can be used to (1) diVerentiate cultivars and construct heterotic

groups; (2) identify germplasm redundancy, underrepresented alleles, and

genetic gaps in current germplasm collections; (3) monitor genetic shifts

that occur during germplasm domestication, storage, regeneration, and

breeding; (4) screen germplasm for novel and/or superior genes or alleles;

and (5) construct a representative subset or core collection (Xu et al., 2003,

2004a) . Alth ough computa tional pro grams are av ailable for all relev ant

analys es includi ng computer sim ulation and resamp ling (Xu et al. , 2004a) ,

a fully integrated, user‐friendly graphical program is needed to bring all these

functions together to facilitate decisions through all aspects of germplasm

evaluation.

Several software packages, such as Statistica, JMAP, SAS, NTSYS, Gene-

Flow, can be used for the analysis of germplasm evaluation data. This



Table XVI

List of Decision Support Tools to Support Molecular Breeding Programs

Tool Function References

Germplasm evaluation

JMAP/SAS Clustering, PCA http://www.sas.com/

Structure Identify distinct populations and estimate allele frequencies Pritchard et al., 2000a

GGT (Graphical

GenoTypes)

Transform marker data into simple colorful chromosome drawings van Berloo, 1999

GERMPLASM Classify cultivars and construct heterotic groups; identify germplasm

redundancy, underrepresented alleles, and genetic gaps; monitor genetic

shifts; screen for novel/superior genes (alleles); construct a representative

subset or core collection

Xu et al., 2004a

Breeding population management

Hybrid performance

prediction

BLUP‐based methods Bernardo, 1994, 1996

Genetic map construction

MAPMAKER/EXP Build linkage map from molecular marker data Lander et al., 1987

MAPDISTO Build linkage map from molecular marker data with distorted segregation http://mapdisto.free.fr/

MAP MANAGER

CLASSIC

A graphic, interactive program for linkage map construction Manly, 1993

JOINMAP Combine data derived from several sources into an integrated map Van Ooijen and Voorrips, 2001

GMendel Linkage mapping using simulated annealing and multiple pair‐wise methods

for F2, BC, DH, RIL, and any generations of SSD

http://www.maizegdb.org/mnl/66/

45echt.html

Genotype‐phenotype association
MAPMAKER/QTL Map QTL using interval mapping, dealing with simple QTL and several

standard populations

Lander et al., 1987

MAP MANAGER QT A graphic, interactive program for QTL mapping by regression methods Manly and Olsen, 1999

MAP MANAGER QTX A graphic, interactive program for QTL mapping using intercross, BC or RIL

in plants or animals

Manly et al., 2001

(continued )
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Table XVI (continued )

Tool Function References

QTL Cartographer QTL mapping using several interval mapping methods with permutation tests

to estimate QTL thresholds

http://statgen.ncsu.edu/qtlcart/

cartographer.html

PLABQTL Identifying QTL using composite interval mapping and QTL � environment

interaction analysis

Utz and Melchinger, 1996

QTL EXPRESS QTL mapping in outbred populations including line crosses, half‐sib families,

nuclear families and sib‐pairs, with permutation tests to determine empirical

significance levels and boots‐trapping to estimate empirical confidence

intervals of QTL locations

Seaton et al., 2002

MapPop Identify QTL using selective and bin mapping by choosing good samples from

mapping populations and for locating new markers on preexisting maps

Vision et al., 2000

MCQTL QTL mapping using multicross designs Jourjon et al., 2005

EPISTACY A SAS program to test for all possible two‐locus interaction eVects on a QTL

using least squares methods

Holland, 1998

STRAT Association mapping with incorporated function for structure analysis Pritchard et al., 2000b

TASSEL A comprehensive software for trait analysis by association, evolution, and

linkage, including association mapping, diversity estimation and calculating

linkage disequilibrium

Zhang et al., 2006b

BQTL (Bayesian QTL

mapping)

Maximum likelihood estimation of multigene models; Bayesian estimation of

multigene models via Laplace Approximations; and interval mapping and

composite interval mapping of genetic loci

Borevitz et al., 2002

MAS

Plabsim MAS simulation for all common breeding methods. Selection can be carried

out at defined loci or for selection indices calculated from allele frequencies

at several loci. The simulated data can be analyzed for genetic parameters

such as population size, marker density and positions, and selection

strategies

Frisch et al., 2000

Popmin Numerical optimization of population sizes in marker‐assisted backcross

programs

Hospital and Decoux, 2002
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BCSIM Simulation for evaluation of marker‐assisted backcross programs http://www.dpw.wau.nl/pv/pub/bcsim/

index.htm

Breeding design and simulation

QU‐GENE (QUantitative

GENEtics)

Simulation platform for quantitative analysis of genetic models including

genotype by environment interaction analysis

Podlich and Cooper, 1998

QuCim Identify the best crosses and breeding strategies from mass selection, pedigree

system, bulk population system, backcross breeding, top cross (or three‐way
cross) breeding, DH breeding, MAS, and many combinations and

modifications of these methods

Wang et al., 2004

QuLine Define genetic models from simple to complex based on simulation experiments

to optimize breeding programs and improve breeding eYciency

Wang et al., 2004

Information management and integrated tools

CMTV Display syntenic regions across taxa, combine maps from separate experiments

into a consensus map, or project data from diVerent maps into a common

coordinate framework using dynamic coordinate translations between

source and target maps

Sawkins et al., 2004

QTLFinder Integrate QTL and linkage maps into a consensus map; do QTL meta‐analysis
and show colocations; construct comparative map of interspecies (or

intraspecies) genomes; and compare collinearity of same or similar traits

across genomes

Yan et al., personal communication

ICIS (International Crop

Information System)

Kink the gene, gene value, and target environment data with the uniquely

identified germplasm units used and manipulated in breeding programs. It

has ICIS as the Genealogy Management System (GMS) to manage data on

nomenclature, origin, development and deployment of germplasm and the

Data Management System (DMS) to manage and document

characterization and evaluation data

http://www.icics.cgiar.org:8080/

iMAS (integrated decision

support system for

marker‐assisted plant

breeding)

Facilitate an integrated, error‐free, and appropriate data analysis from the

beginning to end of the molecular breeding pathway, including experimental

design, biometric analysis of phenotypic data, linkage and association

mapping, linkage map construction, and MAS

http://www.generationcp.org/vw/

Download/

Commisioned_Research_2005/

33_SP4_MAS.pdf#search ¼‘iMAS%

20marker%20assisted%20selection’

A
P
P
L
IE

D
C
R
O
P
G
E
N
O
M
IC

S
265

http://www.dpw.wau.nl/pv/pub/bcsim/index.htm
http://www.dpw.wau.nl/pv/pub/bcsim/index.htm
http://www.icics.cgiar.org:8080/
http://www.generationcp.org/vw/Download/Commisioned_Research_2005/33_SP4_MAS.pdf#search='iMAS%20marker%20assisted%20selection'
http://www.generationcp.org/vw/Download/Commisioned_Research_2005/33_SP4_MAS.pdf#search='iMAS%20marker%20assisted%20selection'
http://www.generationcp.org/vw/Download/Commisioned_Research_2005/33_SP4_MAS.pdf#search='iMAS%20marker%20assisted%20selection'
http://www.generationcp.org/vw/Download/Commisioned_Research_2005/33_SP4_MAS.pdf#search='iMAS%20marker%20assisted%20selection'
http://www.generationcp.org/vw/Download/Commisioned_Research_2005/33_SP4_MAS.pdf#search='iMAS%20marker%20assisted%20selection'


266 S. L. DWIVEDI ETAL.
includes the use of principal component or coordinate analysis to identify

distinct groups or populations, and for cluster or structure analysis to define

population structure. For example, STRUCTURE (Pritchard et al., 2000a)

uses multilocus genotype data to investigate population structure, assign

individuals to populations, study hybrid zones, identify migrants and

admixed individuals, and estimate population allele frequencies in situations

where many individuals are migrants or admixed. It can be applied to

datasets from most of the commonly used genetic markers, including SSR,

RFLP, and SNP.
B. MANAGING BREEDING POPULATIONS

Decision‐support tools to help the management of breeding populations

are needed to assist in the choice of parental lines, types of crosses, and

nature of breeding system. Computational tools may also assist in the

establishment and maintenance of heterotic groups, the selection of lines

for creation of a synthetic cultivar, the prediction of progeny and hybrid

performance, and the monitoring of genomic profiles during population

improvement.

Genotyping parental lines on a genome‐wide scale, especially when gene‐
based markers are available, provide an opportunity for establishing parent–

hybrid performance relationships at the molecular level. Genome‐wide het-

erozygosity and specific combinations of alleles (linkats) may be useful

determinants in some crops for maximizing heterosis and hybrid vigor.

Melchinger and Gumber (1998) used a multistage procedure to identify

heterotic groups, which consists of the following steps: (1) grouping the

germplasm based on genetic similarity, (2) selection of representative geno-

types (e.g., two or four lines or one population) from each subgroup for

producing diallel crosses, (3) evaluation of diallel crosses among the sub-

groups together with parents, and (4) selection of the most promising cross

combinations as potential heterotic patterns.

The ability to use molecular markers to predict hybrid performance would

greatly enhance the eYciency of hybrid breeding programs. Development of

a reliable method for predicting hybrid performance or heterosis without

generating and testing hundreds or thousands of single cross combinations

has been the goal of numerous studies using marker data and combinations

of marker and phenotypic data, particularly in maize and rice. The best

linear unbiased prediction (BLUP) procedure has been used for decades

for evaluating the genetic merit of animals, especially dairy cattle. Intrapop-

ulation, additive genetic models have traditionally been used for BLUP in

animal breeding (Henderson, 1975). Bernardo (1994, 1996) used BLUP

in maize breeding with interpopulation genetic models that involve both
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general combining ability and specific combining ability and found that

BLUP is useful for routine prediction of single‐cross performance. The

predicted performance of single crosses may subsequently be used to predict

the performance of F2 � tester combinations, three‐way crosses, or double

crosses. Along with the pedigree relationship, BLUP can use trait data, or

both trait and marker data, for prediction.

A synthetic cultivar is developed by intercrossing selected clones or inbred

lines, with seed production of the cultivar through open‐pollination. MAS

can be used to develop synthetic cultivars by mixing inbred lines that have

been bred by MAS or by mixing individual plants derived from any stage of

MAS. With genotypic information available across the whole genome for

all the selected individuals or inbred lines, synthetic cultivars can be created

to contain complementary genotypes, fixed heterozygosity, and the best

combinations of genetic structure.
C. GENETIC MAP CONSTRUCTION

Genetic maps can be constructed using segregating populations of diVer-
ent types, which have diVerent advantages depending on the species and level

of polyploidy. MAPMAKER/EXP is the most frequently used software for

map construction (Lander et al., 1987). Various maps can be generated based

on populations derived from diVerent crosses or the same population eval-

uated in diVerent environments. These maps can be integrated into a single or

consensus map. JOINMAP is used to construct genetic linkage maps for

several types of mapping populations. It can combine (join) data from

several sources into an integrated map, with several other functions, includ-

ing LG determination, automatic phase determination for outbred full‐sib
family, several diagnostics, and map charts (Van Ooijen and Voorrips, 2001).

GMendel uses simulated annealing and multiple pair‐wise methods for locus

ordering. All markers within an LG are used simultaneously to estimate a

locus order that provides maps equivalent to those found by MAPMAKER

and JOINMAP. It can be used to build maps using F2, backcross, DHL,

RIL, and in any generation of SSD lines. Other software packages in use are

MAPDISTO (http://mapdisto.free.fr/) and MAP MANAGER CLASSIC

(Manly, 1993) that perform specific functions.
D. IDENTIFYING MARKER‐TRAIT ASSOCIATIONS

Establishing a highly significant genotype–phenotype association is one of

the prerequisites for MAS. Linkages or associations between target traits or

genes and molecular markers are detected based on genetic linkage or

http://mapdisto.free.fr/
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assocition mapping experiments. Decision‐support tools required for

genotype–phenotype association include (1) statistical methods and tools to

establish, validate, and compare genotype–phenotype associations through

linkage mapping, LD, or AM, and in silicomapping, using single or multiple

genetic populations, genetic resources, or breeding populations; (2) statistical

methods and tools for identification of genetic background eVects, QTL

alleles at multiple loci, and multiple alleles at a single locus; (3) tools facil-

itating the validation of candidate gene markers with linked markers in order

to generate functional markers; and (4) tools facilitating management of

genetic populations, linkage maps, and related data. A widely used QTL

mapping software is QTL Cartographer (http://statgen.ncsu.edu/qtlcart/

cartographer.html), which implements several statistical approaches to anal-

ysis of multiple marker data including composite interval mapping (CIM)

and multiple interval mapping. The interaction between diVerent QTL can

also be estimated. Another populated QTL mapping software is PLABQTL

that uses CIM with many functions common to those of QTL Cartographer.

QTL can be localized and characterized in populations derived from a

biparental cross. Simple interval mapping (SIM) and CIM are performed

using a fast multiple regression procedure. PLABQTL can also be used to

analyze QTL � environment interactions (Utz and Melchinger, 1996).

For mapping with populations from outbreeding species, QTL EXPRESS

can be used to map QTL using line crosses, half‐sib families, nuclear families,

and sib‐pairs (Seaton et al., 2002). EPISTACY is a SAS‐based program

which can test pair‐wise epistatic (interaction) eVects on a quantitative trait

using QTL‐mapping datasets (Holland, 1998). Other softwares for mapping

QTL include MAPMAKER/QTL (Lander et al., 1987), MAP MANAGER

QT (Manly and Olsen, 1999), MAP MANAGER QTX (Manly et al., 2001),

MapPop (Vision et al., 2000), and MCQTL (Jourjon et al., 2005).

Software packages are also now available for mapping genetic traits using

Bayesian approaches. For example, BQTL performs (1) maximum likelihood

estimation of multigene models, (2) Bayesian estimation of multigene models

via Laplace approximations, and (3) interval mapping and CIM of genetic

loci (Borevitz et al., 2002), while BLADE is used for Bayesian analysis of

haplotypes for LD mapping (Liu et al., 2001b; Lu et al., 2003).

AM or LD mapping, using unstructured populations, is gaining increas-

ing credibility over traditional QTL mapping using genetic populations (see

Section II.D). However, softwares are needed that analyze and remove the

eVect of population structure. STRAT uses a structured association method

for AM, enabling valid case‐control studies even in the presence of popula-

tion structure (Pritchard et al., 2000b). The software TASSEL has been

released, which performs a variety of genetic analyses, including AM, diver-

sity estimation, and LD analysis (Zhang et al., 2006b). The association

http://statgen.ncsu.edu/qtlcart/cartographer.html
http://statgen.ncsu.edu/qtlcart/cartographer.html


APPLIED CROP GENOMICS 269
analysis between genotypes and phenotypes can be performed by either a

general linear model or a mixed linear model. The general linear model

allows users to analyze complex field designs, environmental interactions,

and epistatic interactions. The mixed model is especially designed to handle

polygenic eVects at multiple levels of relatedness, including pedigree in-

formation. These new analyses should permit association analysis in a

wide‐range plant and animal species.
E. MARKER‐ASSISTED SELECTION

Many factors influence the eYciency of MAS in plant breeding programs

(see Section VI.A and B). Decision‐support tools are needed to determine

sample size for foreground and background selection, for estimation of

genetic gains (response to selection), for construction of selection indices

for multiple traits and whole‐genome selection, for estimation and graphical

display of RGC of selected individuals at each generation of introgression,

for identification of desirable plants based on both phenotype and genotype

information, for cost‐benefit analysis, and for marker‐aided simulations

studies.

There has been much interest in the development of software that simu-

lates MAS using genetic models. Early eVorts had somewhat limited results,

for example, GREGOR simulates MAS based only on predefined genetic

linkage maps, and is thus restricted in its value for simulation of MAS in

breeding programs (Tinker and Mather, 1993). More recently, Plabsim was

developed for the simulation of MAS programs, with the following features:

(1) simulations can be made for any diploid genome with an arbitrary

number of loci at arbitrary positions on an arbitrary number of chromo-

somes; (2) the implemented reproduction schemes include all common breed-

ing methods; (3) an arbitrary number of selection steps can be combined with

a specified selection strategy and selection can be carried out for genotypes at

defined loci, or for selection indices calculated from allele frequencies at

several loci; and (4) the simulated data can be analyzed for a broad range

of genetic parameters including population size, marker density and posi-

tions, and selection strategies on the genetic composition of the breeding

product and on the required number of marker data points (Frisch et al.,

2000). Other software packages related to MAS include Popmin for the

numerical optimization of population sizes in marker‐assisted backcross

programs (Hospital and Decoux, 2002), GGT for displaying molecular

marker data into simple colorful graphical representations of chromosome

haplotypes (van Berloo, 1999), and BCSIM for evaluation of marker‐assisted
backcross programs (http://www.dpw.wau.nl/pv/pub/bcsim/index.htm).

http://www.dpw.wau.nl/pv/pub/bcsim/index.htm
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F. GEI ANALYSIS

Computational tools are needed to assist in dealing with many complex

issues related to the eVect of the environment, particularly regarding complex

traits, including:

� To separate genetic (G) eVects from the environment (E) and GEI

interaction

� To incorporate environmental and genotypic variables into statistical

models to explain GEI

� To define target populations and genotypes for a given environment

� To determine subsets of genotypes and sites with negligible crossover

eVects to identify subgroups of sites and genotypes with similar response

to maximize response to selection

� To develop selection indices using phenotypic and marker data to select the

best genotypes

� To study genetic diversity of crop genotypes associated with the target

traits and perform AM

� To study gene expression under target conditions using microarray

technology

Podlich and Cooper (1998) developed QU‐GENE software for carrying

out quantitative genetic analyses of GEI in crop breeding and this has

become an increasingly widely utilized decision‐support tool in breeding

programs. Statistical models have been refined in order to incorporate pedi-

gree information (or coeYcient of parentage) among genotypes when mod-

eling GEI (Crossa et al., 2006). It is likely that these will soon be further

refined using whole‐plant physiology models.
G. BREEDING DESIGN AND SIMULATION

The major objective of plant breeding programs is to develop new culti-

vars superior to those currently available in a given target production envi-

ronment (TPE). Designing eVective breeding systems requires information

about target genes, donor germplasm, and proposed elite recurrent parents.

This can then be combined with evaluation data on the target biological

characteristics, breeding objectives for the TPE, in order to optimize the

breeding procedure and selection methods through modeling and simulation

analysis. This type of analysis will also predict the desirable target genotype

and the probability of successfully generating new cultivars through the

proposed breeding system. QU‐GENE, a simulation platform based

on quantitative genetic models, facilitates the simulation of actual breed-

ing programs through its two‐stage process (Podlich and Cooper, 1998).
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The genetics and breeding simulation tool (QuLine and QuCim) has the

potential to utilize vast and varied genetic information. QuLine is capable

of defining genetic models ranging from simple to complex inheritance.

QuCim can be used to identify the best crosses and breeding strategies by

predicting cross performance and comparing diVerent selection methods.

Using simulation experiments, breeders may optimize their breeding pro-

grams and thereby greatly improve the breeding eYciency (Wang et al.,

2004). Almost all eVorts in this field have been focused on genetic models,

thus none provides the facility to carry out such as cost benefit analysis or

integrate whole‐plant physiology models.
H. INFORMATION MANAGEMENT AND INTEGRATED TOOLS

Crop informatics has become a prerequisite in molecular breeding because

breeding‐related information is increasing at such a high rate that collecting,

storing, mining, and manipulating such a large amount of information for

selection decisions would not be possible without appropriate statistical,

biometrical, and informatics tools. An integrated breeding tool is therefore

needed to rapidly collect, analyze, and represent breeding‐related data in the

short‐time window available for most selection decisions. In addition,

computational tools are required to translate and integrate research outputs

into a usable form for plant breeding programs.

International Crop Information System (ICIS) is open‐source communi-

ty developed software that has been evolving over many years. ICIS can link

gene, gene value, and target environment data with the uniquely identified

germplasm units used and manipulated in breeding programs (http://www.

icis.cgiar.org:8080/). ICIS has a modular structure with a core consisting of

Genealogy Management System (GMS) that manages data on nomencla-

ture, origin, development, and deployment of germplasm and the Data

Management System (DMS) that manages and documents characterization

and evaluation data. Specialized user interfaces deliver data views and

decision‐support tools to crop scientists from diVerent disciplines, which
can access common data resources leading to eYcient use and reuse of

research data. ICIS databases tailored to diVerent crops are also being

developed for separate ICIS implementations. ICIS has also embedded a

parallel structure of central and local versions that provides local read/write

capabilities, allowing data generated locally to be merged and harmonized

with the central database at the local user’s discretion. Some of the issues

that need to be further integrated into ICIS to meet breeding requirements

include: (1) a database for all environmental characterization data such as

climate, soil, and abiotic stress information; (2) data‐mining tools for

all breeding purposes such as GEI and identification of novel alleles

http://www.icis.cgiar.org:8080/
http://www.icis.cgiar.org:8080/
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and genetic variation; (3) modeling breeding processes and selection

schemes using multiple sources of breeding information to eliminate some

field and laboratory tests required for making selection decision, which may

be critical for complex traits; and (4) linkage to major public databases with

appropriate data comparison and mining tools to enable extraction of

useful information through comparative analysis of the specific breeding

program data with global research outputs.

Researchers need eYcient and intuitive tools to help identify common

genomic regions, and, where possible, specific genes involved in influencing

the expression of target traits across diverse germplasm and growing condi-

tions. Sawkins et al. (2004) developed the comparative map and trait viewer

(CMTV) that can help integrate various kinds of genomic maps. Its major

strength is in the comparative display of LGs or chromosomes across diVerent
species, populations, or evaluation environments and link information asso-

ciated with diVerent objects on the maps. These correspondences could then

be displayed as graphical lines linking corresponding loci between maps in

order to illustrate syntenic relationships. Alternatively, they could be used to

construct a consensusmapusing these commonmarkers as anchors fromwhich

the positions of other markers could be interpolated. However, the current

version of this software stops short of being able to carry out combined analysis

across the maps to be compared. In contrast, QTLFinder can carry out this

type ofQTLmeta‐analysis. This software integratesQTL from separate experi-

ments and linkage maps into a consensus map. QTLFinder can also construct

comparative maps across species using sequence similarity, and compare the

colinearity of same or similar traits across genomes (Jianbing Yan, China

Agricultural University, Beijing, personal communication).

An integrated decision support system for marker‐assisted plant breeding

iMAS (a GCP‐supported software) will be released by the end of 2006

(Subhash Chandra, ICRISAT, personal communication), is expected to

assist the development and application of marker‐assisted plant breeding

by integrating the best freely available quality software required for the

journey from phenotyping‐and‐genotyping of individuals to identification

and application of trait‐linked markers. iMAS will provide simple‐to‐under-
stand‐and‐use online decision‐support guidelines to help the user correctly

use this software, and correctly interpret the outputs. Software identified for

inclusion in iMAS includes IRRISTAT (for experimental design, biometric

analysis of phenotypic data, and AM), GMendel and MapDisto (for linkage

map construction), PlabQTL and QTL Cartographer (for QTL analysis),

PopMin (for estimating sample size for foreground and background selec-

tion), GGT (for estimation and display of RGC of selected individuals), and

TASSEL (for AM).

Many support tools are available for use with functional genomic data,

but these are yet to be fully explored for direct application in breeding
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programs. These tools are for sequence comparison, handling and analysis,

microarray data treatment and analysis, motif alignment and search, and

comparative genomics. Various softwares such as EHAP (http://wpicr.wpic.

pitt.edu/WPICCompGen/ehap__v1.htm), DPPH (Bafna et al., 2003), HAP-

LOVIEW (Barrett et al., 2005), HAPLOT (Gu et al., 2005), HAP (1) (http://

research.calit2.net/hap/), and HAP (2) (Zhao, 2004) have been developed for

haplotype analysis using SNP data. It is likely that these approaches will

soon be widely used by molecular breeders across diverse crops as sequence

and expressional data become increasingly available.
IX. FUTURE PROSPECTS FOR THE
MOLECULARIZATION OF PUBLIC

CROP IMPROVEMENT
Plant breeding is the science, art, and business of improving plants for

human benefit

(Bernardo, 2002)

The rate, scale, and scope of uptake of genomics in crop breeding programs

have continually lagged behind expectations. This is little diVerent to the

adoption of quantitative genetics, mechanization, and computerization during

the last century. This is partly due to the long product development cycle in

plant breeding and in turn the long‐term nature of feedback from the market

regarding the impact of any changes in the cultivar development pipeline. Thus,

although molecularization of plant breeding is the fourth natural paradigm

shift for crop improvement programs, wemust assume that the introduction of

MAS and the breeding with transgenic germplasm will be a gradual stepwise

process. At the same time, there is considerable and immediate need for

computational tools to help breeders more eVectively translate and integrate

the outputs from bioscience research and to help eYciently select the best

technology interventions and associated breeding systems for their target traits

andmarkets.With the availability of comprehensive and robust facilitating and

decision‐support tools, it is expected that plant breeders will become much

more responsive to the emergence of new technologies.

Polymorphic DNA markers and genetic maps are now available for most

important food crops, albeit in varying numbers and levels of genomic

saturation (Tables VI–VIII and X; Dwivedi et al., 2005). Similarly, the

genetic control of many agronomic traits is well characterized in many

crops, and marker‐trait linkages have been reported for a diverse array of

traits in a large number of crops (Section II). A critical mass of reports of

http://wpicr.wpic.pitt.edu/WPICCompGen/ehap__v1.htm
http://wpicr.wpic.pitt.edu/WPICCompGen/ehap__v1.htm
http://research.calit2.net/hap/
http://research.calit2.net/hap/
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validation in diVerent genetic backgrounds and environments is naturally

only just beginning to emerge (Section III; Tables XI and XII). Nevertheless,

MAS is now being practiced in most well‐researched crops (Section IV.A–D;

Tables XIII and XIV). In the private sector, molecular breeding applications

are still dominated by MAS for transgene introgression and to a lesser extent

for backcross programs for simple traits (Section V). Thus, only a very small

proportion of marker genotyping is currently being used for complex traits

where it has been long since highlighted that MAS will have its greatest

impact. In the short term, we expect the greatest growth in MAS of mono‐
and oligogenic traits that are diYcult or expensive to screen using conven-

tional phenotyping methods (Section VI). In the medium term, we envisage

that a number of emerging technologies will facilitate a gradual shift from

MAS for individual simply inherited traits to more holistic molecular breed-

ing strategies (Section VII). It is only at this point that we expect to see a

significant increase of interest in the application of MAS for polygenic traits.

However, there are a number of technical and logistical hurdles that must be

overcome before genomic tools can assist the breeding of such complex

targets.

Traditionally, the heritability of quantitative traits was the most common

predictor of genetic gains for diVerent plant breeding methods. DNA mar-

kers may be used today to accelerate and enhance overall breeding methods

by combining DNA marker and phenotyping data in a selection index. The

best current success stories of MAS in plant breeding tend to focus on traits

that are diYcult to screen and controlled by one or few genes. However, more

recently there have been a number of successes in pyramiding a range of

diVerence sources of biotic and abiotic stress resistances (Table XIV). This

engenders hope for the potential of MAS to improve important quantitative

traits, particularly when accelerating the use of new sources of variation in

elite germplasm. DNA markers will also be useful tools for early testing.

However, geneticists and plant breeders will still need to deal with LD while

usingMAS in recurrent selection, especially when using polymorphicmarkers

arising frommapping populations, which tend to be from diverse parents, and

thus may not be relevant for target breeding materials. The power of MAS

will also continue to rely heavily on the accuracy and precision of phenotyp-

ing, and the characterization and evaluation of germplasm in the field. Issues

such as the error term to test for the significance of a QTL, detecting small

eVects with narrow genetic variance, or the number of QTL not related to

genetic variance or divergence of parents are all under‐researched areas that

need priority attention by geneticists. Addressing these issues will allow plant

breeders to define the optimum number of individuals/lines andmarkers to be

used in their MAS programs.

Plant breeders are ready to apply MAS for quantitative traits when the

genetic gain and time or cost eYciency from doing so are clearly higher than
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through conventional selection methods. Initial emphasis in this area should

be on traits for which a robust cost‐eVective phenotyping system is not

available for the target trait. To quickly reach this stage requires a paradigm

shift in strategy among the marker‐trait identification community: from

eVorts to identify all QTL influencing the target trait to a focus on identifica-

tion of a few QTL having the largest eVect on the target trait. QTL of major

eVect may be easier to detect (in the right genetic material), and be less

influenced by GEIs and genetic background eVects. Of great importance

will be a shift away from analysis of entire genetic populations to an empha-

sis on selected individuals with extreme phenotypes from relevant breeding

populations and genetic stocks and likely, pooled DNA analysis using the

selected individuals. Of equal importance will be a shift from linked markers

to diagnostic gene‐based markers, which will generally be SNP based and

thus readily scalable for high‐throughput haplotyping. Detailed cost‐benefit
analysis of various elements of DNA marker development and application,

including the cost of the required genotyping platforms and professional

expertise, needs to be assessed at the earliest possible stage. This is particu-

larly important at this time when most public plant breeding programs are

not adequately funded or poorly equipped to reach a critical threshold of

marker assay throughput. Molecular breeding consortia accessing joint ven-

ture genotyping hubs or commercial service providers appear to be an

increasingly realistic option where those facilities can provide the right

quality, quantity, and timelines of service to fit the given breeding system.

In the last decade, computational tools have rapidly evolved to provide

solutions for the data acquisition, management, analysis, and visualization

needs arising from the development and widespread use of high‐throughput
genomics technologies. Plant breeders expect that informatics will assist with

the development of diagnostic tools for identification of the best breeding

systems, optimization of the best crosses, and selection of the best ensuing

segregating progeny. Likewise, bioinformatic research should identify caus-

ative alleles and estimate breeding values or relative risks in the context of

breeding populations. Moreover, besides assisting with candidate genes,

bioinformatics should provide plant breeders with information regarding

LD and epistatic and pleiotropic eVects of the allele in the target breeding

population. Statistical methods will assist in estimating and predicting

allele eVects which should be updated as the alleles are assessed in distinct

breeding backgrounds and across other environments. Information on breed-

ing values provided by DNA markers may enable identification of DNA

markers for further use in a more robust MAS system.

Geneticists can use DNA markers to dissect complex epitasis eVects,
which may arise as an outcome of selection‐induced variation. For example,

a minor or neutral QTL may become a major QTL when selection brings

changes that create the most appropriate genetic background for interaction
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with that target QTL. The release of genetic variability through capitalizing

on epistasis may allow a more extended response to selection than that

currently resulting solely from additive variance.

Genotype‐by‐environment interaction (GEI) occurs when the eVects of

the environment, the genotype or both, are nonadditive. GEI may lead to

divergence, convergence, or crossover performance of genotypes across the

environments; that is, the distinct performance among genotypes depends on

the environment (location, year, cropping season). Linear mixed models are

used for modeling GEI and assisting the grouping of environments and

genotypes. Factorial and partial least squares regressions incorporate exter-

nal environmental and genotypic covariables directly into the model. These

are useful tools for gaining more insight into the genetics of the target trait by

adding molecular marker data associated with quantitative trait variation in

the model for interpreting GEI. With more and more information accumu-

lating from genotyping and phenotyping, integration of these diverse data-

sets with environmental characterization data will help establish genetic

models for GEI and apply them to crop improvement. Molecular markers

could further explain some of the GEI variabilities and assist in breeding for

low‐heritability traits. For example, Paterson et al. (1991) suggested that, for

a low‐heritability trait such as soluble solids in tomato, the phenotype of F3

progeny could be predicted more accurately from the QTL genotype of the

F3 parent than from the phenotype of the F2 individual.

Applied genomic tools are being used to unravel the molecular mechanism

of heterosis, classifying germplasm with distinct heterotic groups, predicting

hybrid performance, understanding the relationships between heterozygosity

and genetic distance with hybrid performance and heterosis. All these will

lead to a better understanding of the genes regulating the network of diverse

physiological pathways that control the expression of hybrid vigor. This will

undoubtedly lead to enhanced use of MAS for the development of superior

yielding hybrids. So far, various hypotheses have been proposed to explain

the genetic mechanisms of heterosis, each being supported to some extent by

diVerent experimental data. Considering that heterosis may mediate its eVect
at various levels and developmental stages for diVerent traits, it is feasible
that there is no single genetic model or hypothesis that can be used to explain

all heterotic eVects observed in hybrids across traits, crops, and breeding

systems (Xu, 2003). Molecular markers will provide new insights into heter-

osis as it becomes feasible to carry out genome‐wide analysis of parental lines
across large numbers of hybrids, germplasm accessions, and breeding

materials.

Plants exhibit massive changes in gene expression during morphophysio-

logical and reproductive development as well as when exposed to a range of

biotic and abiotic stresses (Section VII.C). A new field of genetics of global

gene expression has emerged based on the application of traditional
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techniques of linkage and association analysis for the thousands of tran-

scripts measured by microarrays. Dissecting the architecture of quantitative

traits in this way connects DNA sequence variation with phenotypic varia-

tion, and is improving our understanding of transcriptional regulation and

regulatory variation (Rockman and Kruglyak, 2006).

A range of decision‐support tools are needed to facilitate communication

among scientists involved in diVerent elements of the crop improvement

product development pipeline. While there are a number of computational

tools to carry out various functions in the research domain, it is essential that

these tools are integrated into a common platform to assist their eVective
deployment in crop improvement. iMAS (www.generationcp.org), an

integrated decision support systems for marker‐assisted plant breeding, is a

preliminary attempt to create a publicly available computational platform to

assist the development and application of marker‐assisted plant breeding.

iMAS currently integrates freely available software for the journey from

phenotyping‐and‐genotyping of individuals to identification and application

of trait‐linked markers. iMAS also provides simple‐to‐understand‐and‐use
online decision‐support guidelines to help the user correctly operate these

softwares, and correctly interpret the outputs.

It has been argued that genetically modified food is the next great scientific

and technological revolution in agriculture and the only eYcient and cheap

way to feed a growing population in a shrinking world. Genetic transforma-

tion is particularly important for transfer of genes from distant species.

In many cases, genetic transformation will be the only mechanism for har-

nessing the outputs of large‐scale whole‐genome research, particularly in

model systems. At the same time, rapidly accumulating information about

crop genomes is allowing scientists to identify genes associated with benefi-

cial traits in ‘‘crop relatives.’’ Marker‐assisted introgression of these bene-

ficial alleles into existing cultivars will be increasingly critical for eYcient use

of exotic genetic variation in breeding programs. Thus, the intimate integra-

tion of MAS and genetic transformation approaches in field breeding pro-

grams will be an important challenge for the future success of public sector

crop improvement. Using molecular biology tools and outputs, researchers

will be able to broaden the scope of breeding goals, improve the rate and

precision of genetic gain toward specific trait targets, and significantly reduce

the time needed to breed new cultivars. However, there is still much work to

be done in understanding the ‘‘choreography’’ of molecular breeding to the

extent required to reach a knowledge‐led design‐based plant breeding para-

digm. For example, the relationship between single genetic loci, complex

genetic traits, and environmental factors all diVerentially interact to aVect
the development of the plant, its response to biotic and abiotic stresses, and

ultimately the yield. Over the next decade, MAS technologies will become

cheaper and easier to apply at large scale, and knowledge from genomics

http://www.generationcp.org
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research will become more readily translated into breeding tools and

integrated into breeding systems. These advances will empower plant bree-

ders around the world to use molecular breeding approaches as part of a

much larger systemic and holistic approach to sustainable agricultural devel-

opment (http://www.washingtonpost.com/wp‐dyn/content/article/2006/07/
03/AR2006070300922.html).

Plant breeders in the twentieth century accomplished improvements in

crop performance through knowledge and application of scientific advances

in genetics research. However, a substantial proportion of genetic progress

also resulted from pragmatic practice of the art of plant breeding. The crop

genetic enhancers in this twenty‐first century will harness the outputs of

bioscience research (especially genomics) in order to address the challenge

of doubling food production sustainable on same land area (1.5 billion ha) by

2050. To substantially contribute to achieving this goal, it will be necessary to

build holistic knowledge and implementation systems to understand, predict,

and manipulate the interaction of genes and gene networks. This should lead

to the eYcient improvement of a wide range of important agronomic traits

that will be introduced into commercial cultivars by an increasingly con-

trolled and targeted coordination of recombination throughout the breeding

system. DNA markers will therefore play a dual role through aiding genetic

analysis of the underlying basis of important traits, and for assisting in the

selection of promising progeny that after validation through field testing may

become new cultivars in farmers’ fields.
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Moretzsohn, M., and Paterson, A. H. (2006). Peanut. In ‘‘Genome Mapping and Molecular

Breeding in Plants, Volume 2: Oiseeds’’ (C. Kole, Ed.). Springler‐Verlag, Berlin Heidelberg,

Germany.

Dwivedi, S. L., Stalker, H. T., Blair, M. W., Bertioli, D., Upadhyaya, H. D., Nielen, S., and

Ortiz, R. (2007). Enhancing crop gene pools with beneficial traits using wild relatives. Plant

Breed. Rev. 30 (in press).

Eagles, H. A., Bariana, H. S., Ogbonnaya, F. C., Rebetzke, G. J., Hollamby, G. J., Henry, R. J.,

Henschke, P. H., and Carter, M. (2001). Implementation of markers in Australian wheat

breeding. Aust. J. Agric. Res. 52, 1349–1356.

Eathington, S. R. (2005). Practical applications of molecular technology in the development of

commercial maize hybrids. In ‘‘Proceedings of the 60th Annual Corn and Sorghum Seed

Research Conferences.’’ American Seed Trade Association, Washington DC.

Ellis, M. H., Spielmeyer, W., Gale, K. R., Rebetzke, G. J., and Richards, R. A. (2002). ‘Perfect’

markers for the Rht‐B1b and Rht‐D1b dwarfing genes in wheat. Theor. Appl. Genet. 105,

1038–1042.



288 S. L. DWIVEDI ETAL.
Eshed, Y., and Zamir, D. (1994). A genomic library of Lycopersicon pennellii in L. esculentum:

A tool for fine mapping of genes. Euphytica 79, 175–179.

Eshed, Y., and Zamir, D. (1995). An introgression line population of Lycopersicon pennellii in

the cultivated tomato enables the identification and fine mapping of yield‐associated QTL.

Genetics 141, 1147–1162.

Eujayl, I., Sorrels, M. E., Baum, M., Wolters, P., and Powell, W. (2002). Isolation of EST‐
derived microsatellite markers for genotyping the A and B genomes of wheat. Theor. Appl.

Genet. 104, 399–407.

Faleiro, F. G., Ragagnin, V. A., Moreira, M. A., and de Barros, E. G. (2004). Use of molecular

markers to accelerate the breeding of common bean lines resistant to rust and anthracnose.

Euphytica 138, 213–218.

Falque, M., Decousset, L., Dervins, D., Jacob, A.‐M., Joets, J., Martinant, J.‐P., RaVoux, X.,

Ribière, N., Ridel, C., Samson, D., Charcosset, A., and Murigneux, A. (2005). Linkage

mapping of 1454 new maize candidate gene loci. Genetics 170, 1957–1966.

Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., and Zhang, Q. (2006). GS3, a major

QTL for grain length and weight and minor QTL for grain width and thickness in rice,

encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171.

Fasoula, V. A., Harris, D. K., and Boerma, H. R. (2004). Validation and designation of

quantitative trait loci for seed protein, seed oil, and seed weight from two soybean popula-

tions. Crop Sci. 44, 1218–1225.

Fauquet, C. M., and Tohme, J. (2004). The global cassava partnership for genetic improvement.

Plant Mol. Biol. 86, v–x(editorial).
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Schalkwyk, L. C., Rastan, S., Brown, S. D. M., Büssow, K., Himmelbauer, H., et al.

(2002). Genetic analysis of mouse brain proteome. Nat. Genet. 30, 385–393.

Knapp, S. J. (1998). Marker‐assisted selection as a strategy for increasing the probability of

selecting superior genotypes. Crop Sci. 38, 1164–1174.

Kobayashi, S., Araki, E., Osaki, M., Khush, G. S., and Fukuta, Y. (2006). Localization,

validation and characterization of plant‐type QTLs on chromosomes 4 and 6 in rice

(Oryza sativa L.). Field Crop Res. 96, 106–112.
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México, DF.

Raman, H., and Read, B. J. (2000). Molecular breeding for resistance against Russian wheat

aphid in Australian barley. J. Agric. Genomics 5, 1–5.

Raman, H., Karakousis, A., Moroni, S., Raman, R., and Read, B. (2001). Development, valida-

tion and allele diversity of microsatellite markers closely linked with the Alp locus with

aluminium tolerance in barley. (http://www.regional.org.au/au/abts/2001/t4/raman2.htm)

Raman, H., Platz, G. J., Chalmer, K. J., Raman, R., Read, B. J., Barr, A. R., and Moody, D. B.

(2003). Mapping of genomic regions associated with net form of net blotch resistance in

barley. Aust. J. Agric. Res. 54, 1359–1367.

Ramalingam, J., Basharat, H. S., and Zhang, G. (2002). STS and microsatellite marker‐assisted
selection for bacterial blight resistance and waxy gene in rice,Oryza sativa L. Euphytica 127,

255–260.

Ramsay, L., Macaulay, M., degli Ivanissevich, S., MacLean, K., Cardle, L., Fuller, J.,

Edwards, K. J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N.,

et al. (2000). A simple sequence repeat‐based linkage map of barley. Genetics 156,

1997–2005.

Rao, K. E. P., and Rao, V. R. (1995). The use of characterization data in developing a core

collection of sorghum. In ‘‘Core Collections of Plant Genetic Resources’’ (T. Hodgkin,

A. H. D. Brown, Th. J. L. van Hintum, and E. A. V. Morales, Eds.), pp. 109–115. John

Wiley & Sons, Chichester, West Sussex, United Kingdom.

Ravel, C., Praud, S., Murigneux, A., Linossier, L., Dardevet, M., Balfourier, F., Dufour, P.,

Brumel, D., and Charmet, G. (2006). Identification of Glu‐B1‐1 as a candidate gene for the

http://www.regional.org.au/au/abts/2001/t4/raman2.htm


APPLIED CROP GENOMICS 305
quantity of high‐molecular‐weight glutenin in bread wheat (Triticum aestivum L.) by means

of an association study. Theor. Appl. Genet. 112, 738–743.

Redoña, E. D., and Mackill, D. J. (1996). Mapping quantitative trait loci for seedling vigor in

rice using RFLPs. Theor. Appl. Genet. 92, 395–402.

Reinke, R. F., Welsh, L. A., Reece, J. E., Lewin, L. G., and Blakenet, A. B. (1991). Procedures

for quality selection in aromatic rice varieties. Int. Rice Res. Newsl. 16, 10–11.

Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y., Zhu, M. Z., Wang, Z. Y.,

Luan, S., and Lin, H. X. (2005). A rice quantitative trait locus for salt tolerance encodes a

sodium transporter. Nat. Genet. 37, 1141–1146.

Rensink, W., Hart, A., Liu, J., Ouyang, S., Zismann, V., and Buell, C. R. (2005). Analyzing the

potato abiotic stress transcriptome using expressed sequence tags. Genome 48, 598–605.

Reymond, M., Muller, B., Leonardi, A., Charcosset, A., and Tardieu, F. (2003). Combining

quantitative trait loci analysis and an ecophysiological model to analyze the genetic varia-

bility of the responses of maize leaf growth to temperature and water deficit. Plant Physiol.

131, 664–675.

Ribaut, J. M., and Betrán, J. (2000). Single large‐scale marker‐assisted selection (SLS‐MAS).

Mol. Breed. 5, 531–541.

Ribaut, J. M., and Hoisington, D. (1998). Marker‐assisted selection: New tools and strategies.

Trends Plant Sci. 3, 236–239.

Ribaut, J. M., Hoisington, D. A., Deutsch, J. A., Jiang, C., and González‐de‐León, D. (1996).
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