4,793 research outputs found

    Determining quark and lepton mass matrices by a geometrical interpretation

    Get PDF
    By designating one eigenvector of the mass matrix, one can reduce the free parameters in the mass matrix effectively. Applying this method to the quark mass matrix and to the lepton mass matrix, we find that this method is consistent with available experimental data. This approach may provide some hints for constructing theoretical models. Especially, in the lepton sector, the Koide's mass relation is connected to the element of the tribimaximal matrix through Foot's geometrical interpretation. In the quark sector, we suggest another mass formula and the same procedure also applies.Comment: 13 pages, to appear in Phys.Lett.

    The U(1)-Higgs Model: Critical Behaviour in the Confinig-Higgs region

    Full text link
    We study numerically the critical properties of the U(1)-Higgs lattice model, with fixed Higgs modulus, in the region of small gauge coupling where the Higgs and Confining phases merge. We find evidence of a first order transition line that ends in a second order point. By means of a rotation in parameter space we introduce thermodynamic magnitudes and critical exponents in close resemblance with simple models that show analogous critical behaviour. The measured data allow us to fit the critical exponents finding values in agreement with the mean field prediction. The location of the critical point and the slope of the first order line are accurately given.Comment: 21 text pages. 12 postscript figures available on reques

    Hepatic encephalopathy-associated cerebral vasculopathy in acute-on-chronic liver failure: Alterations on endothelial factor release and influence on cerebrovascular function

    Full text link
    The acute-on-chronic liver failure (ACLF) is a syndrome characterized by liver decompensation, hepatic encephalopathy (HE) and high mortality. We aimed to determine the mechanisms implicated in the development of HE-associated cerebral vasculopathy in a microsurgical liver cholestasis (MHC) model of ACLF. Microsurgical liver cholestasis was induced by ligating and extracting the common bile duct and four bile ducts. Sham-operated and MHC rats were maintained for eight postoperative weeks Bradykinin-induced vasodilation was greater in middle cerebral arteries from MHC rats. Both Nω-Nitro-L-arginine methyl ester and indomethacin diminished bradykinin-induced vasodilation largely in arteries from MHC rats. Nitrite and prostaglandin (PG) F releases were increased, whereas thromboxane (TX) B was not modified in arteries from MHC. Expressions of endothelial nitric oxide synthase (eNOS), inducible NOS, and cyclooxygenase (COX) 2 were augmented, and neuronal NOS (nNOS), COX-1, PGI synthase, and TXA S were unmodified. Phosphorylation was augmented for eNOS and unmodified for nNOS. Altogether, these endothelial alterations might collaborate to increase brain blood flow in HE. 1α 2 2 2This research was funded by the Ministerio de Economía y Competitividad (SAF2016-80305-P), CiberCV (Grant number: CB16/11/00286), the European Regional Development Grant (FEDER) (Comunidad de Madrid, grant number B2017/BMD- 3676), and R C D projects for young researchers, Universidad Autónoma de Madrid-Comunidad de Madrid (SI1-PJI-2019- 00321). RR-D received a fellowship from Juan de la Cierva Program (IJCI-2017-31399)

    Factors Behind the Higher COVID-19 Risk in Diabetes: A Critical Review

    Get PDF
    Diabetes mellitus (DM) and coronavirus disease 2019 (COVID-19) are public health issues worldwide, and their comorbidities trigger the progress to severe disease and even death in such patients. Globally, DM has affected an estimated 9.3% adults, and as of April 18, 2021, the World Health Organization (WHO) has confirmed 141,727,940 COVID-19 confirmed cases. The virus is spread via droplets, aerosols, and direct touch with others. Numerous predictive factors have been linked to COVID-19 severity, including impaired immune response and increased inflammatory response, among others. Angiotensin receptor blockers and angiotensin converting enzyme 2 have also been identified as playing a boosting role in both susceptibility and severity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, in DM patients, both their control and management during this pandemic is herculean as the restriction periods have markedly hampered the maintenance of means to control glycemia, hypertension, and neuroendocrine and kidney diseases. In addition, as a result of the underlyin cardio-metabolic and immunological disorders, DM patients are at a higher risk of developing the severe form of COVID-19 despite other comorbidities, such as hypertension, also potentially boosting the development of higher COVID-19 severity. However, even in non-DM patients, SARS-CoV-2 may also cause transient hyperglycemia through induction of insulin resistance and/or pancreatic ß-cell injury. Therefore, a strict glucose monitoring of DM patients with COVID-19 is mandatory to prevent life-threatening complications.NC-M acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Chemotactic and osmotic signals share acGMP transduction pathway in Dictyostelium discoideum

    Get PDF
    In the ameboid eukaryote Dictyostelium discoideum, chemotactic stimulation by cAMP induces an increase of intracellular cGMP and subsequently the phosphorylation of myosin heavy chain II. Resistance to high osmotic stress also requires transient increases of intracellular cGMP and phosphorylation of myosin heavy chain II, although the kinetics is much slower than for chemotaxis. To examine if chemotaxis and osmotic stress share common signaling components we systematically analyzed the osmotic cGMP response and survival in chemotactic mutants with altered cGMP signaling. Null mutants with deletions of cell surface cAMP receptors or the associated GTP-binding proteins Gα2 and Gβ show no cAMP-induced cGMP response and chemotaxis; in contrast, osmotic stress induces the normal cGMP accumulation and survival. The same result was obtained with the non-chemotactic mutant KI-10, which lacks the activation of guanylyl cyclase by cAMP. This indicates that these components are required for chemotaxis but not osmotic cGMP signaling and survival. The potential guanylyl cyclase null mutant KI-8 shows no chemotaxis, no osmotic cGMP increase and reduced survival in high osmolarity. Two types of cGMP-binding protein mutants, KI-4 and KI-7, also show reduced tolerance during high osmotic stress. Taken together, these observations clarify that chemotactic and osmotic signals are detected by different mechanisms, but share a cGMP signaling pathway.

    Dietary Epicatechin Is Available to Breastfed Infants through Human Breast Milk in the Form of Host and Microbial Metabolites

    Get PDF
    Polyphenols play an important role in human health. To address their accessibility to a breastfed infant, we planned to evaluate whether breast milk (BM) (colostrum, transitional, and mature) epicatechin metabolites could be related to the dietary habits of mothers. The polyphenol consumption of breastfeeding mothers was estimated using a food frequency questionnaire and 24 h recalls. Solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS) was applied for direct epicatechin metabolite analysis. Their bioavailability in BM as a result of dietary ingestion was confirmed in a preliminary experiment with a single dose of dark chocolate. Several host and microbial phase II metabolites of epicatechin were detected in BM among free-living lactating mothers. Interestingly, a modest correlation between dihydroxyvalerolactone sulfate and the intake of cocoa products was observed. Although a very low percentage of dietary polyphenols is excreted in BM, they are definitely in the diet of breastfed infants. Therefore, evaluation of their role in infant health could be further promoted

    The Health Impact Fund: How Might It Work for Novel Anticoagulants in Atrial Fibrillation?

    Get PDF
    Cardiovascular diseases represent the greatest burden of global disease. Spending on cardiovascular diseases is higher than for other diseases, with the majority being spent on drugs. Therefore, these drugs and these diseases are hugely important to health systems, society, and pharmaceutical companies. The Health Impact Fund represents a new mechanism by which pharmaceutical innovators would be rewarded on the basis of the health impact of their new drugs. This review illustrates the concept of the Health Impact Fund using the example of novel anticoagulants for prevention of stroke and thromboembolism in atrial fibrillation. By considering existing data and the current situation for novel anticoagulants, we suggest that epidemiologic data and modeling techniques can be used to predict future trends in disease and the health impact of new drugs. The Health Impact Fund may offer potential benefits to pharmaceutical companies, patients, and governments and warrants proper investigation

    Mathematical description of bacterial traveling pulses

    Get PDF
    The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on {\em E. coli} have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with {\em E. coli}. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion

    Las redes universitarias de investigación como espacios de colaboración y capital social. El caso de REUNI+D.

    Full text link
    Collaborative networks are considered a critical factor in developing the human species and any living being. Life would not be possible without the dynamic interaction between plants, animals, micro-organisms, non-living beings, and their environment. Nor would human life be possible without considering its physical, social, cultural, and technological environments as a unitary network living within a historical context. In science and academia, the importance of networks has grown exponentially. Based on the experience of a network of excellence with institutional recognition for more than ten years, the purpose of this article is to highlight the value and contributions of this way of working for the advancement of scientific knowledge and public policy. It argues the importance and the necessity of networks and the advantages of network thinking. To illustrate the importance of networks, we analyse the trajectory of the REUNI+D network of excellence, the contributions and tensions of this collaborative structure, the lengthy processes required for its constitution, the social capital that it provides to its members and some conclusions that show the challenges of research networks in universities

    Axillary silicone lymphadenopathy presenting with a lump and altered sensation in the breast: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Silicone lymphadenopathy is a rare but recognised complication of procedures involving the use of silicone. It has a poorly understood mechanism but is thought to occur following the transportation of silicone particles from silicone-containing prostheses to lymph nodes by macrophages.</p> <p>Case presentation</p> <p>We report of a case involving a 35-year-old woman who presented to the breast clinic with a breast lump and altered sensation below her left nipple 5 years after bilateral cosmetic breast augmentations. A small lump was detected inferior to the nipple but clinical examination and initial ultrasound investigation showed both implants to be intact. However, mammography and magnetic resonance imaging of both breasts revealed both intracapsular and extracapsular rupture of the left breast prosthesis. The patient went on to develop a flu-like illness and tender lumps in the left axilla and right mastoid regions. An excision biopsy of the left axillary lesion and replacement of the ruptured implant was performed. Subsequent histological analysis showed that the axillary lump was a lymph node containing large amounts of silicone.</p> <p>Conclusion</p> <p>The exclusion of malignancy remains the priority when dealing with lumps in the breast or axilla. Silicone lymphadenopathy should however be considered as a differential diagnosis in patients in whom silicone prostheses are present.</p
    corecore