280 research outputs found

    Scratching resistance of SiC-rich nano-coatings produced by noble gas ion mixing

    Get PDF
    SiC-rich nano-layers were produced at room temperature by applying ion beam mixing of various C/Si multilayer structures using argon and xenon ions with energy in the range of 40–120 keV and fluences between 0.25 and 3 × 1016 ions/cm2. The mechanical behavior of the layers was characterized by scratch test. The scratching resistance of the ion mixed samples has been measured by standard scratch test applying an atomic-force microscope with a diamond-coated tip (radius < 15 nm) and they were compared to that measured on Si single crystal. The applied load varied in the range of 4–18 μN. The scratching resistance of the samples correlated with the effective areal density of the SiC; with increasing effective areal density the scratch depth decreases. Above sufficiently high effective areal density of SiC the scratch resistance (hardness) of the produced layer was somewhat higher than that of single crystal silicon. Previously it has been shown that such layers have excellent corrosion resistive properties as well. These findings allow to tune and design the mechanical and chemical properties of the SiC protective coatings

    Female rebels and United Nations peacekeeping deployments

    Get PDF
    How does the presence of female rebel combatants during conflict influence the likelihood of United Nations post-conflict peacekeeping deployment? While past literature on peacekeeping emphasizes the role of conflict attributes and security council interests, only few studies investigate the importance of belligerent characteristics. We argue that, because dominant gender stereotypes paint women as peaceful, female rebel combatants lead domestic and international audiences to perceive conflicts in which they fight as more severe. Given that recent UN resolutions and mission mandates align with these stereotypes, this in turn, causes the UN to intervene and deploy peacekeepers. Multivariate regression models drawing on a global sample of UN post-conflict missions provide empirical support for our hypothesis. Our findings add to the growing body of literature emphasizing the role of women in combat roles, and contribute to the discussion on the UN’s Women, Peace, and Security agenda

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    Position-sensitive ion detection in precision Penning trap mass spectrometry

    Get PDF
    A commercial, position-sensitive ion detector was used for the first time for the time-of-flight ion-cyclotron resonance detection technique in Penning trap mass spectrometry. In this work, the characteristics of the detector and its implementation in a Penning trap mass spectrometer will be presented. In addition, simulations and experimental studies concerning the observation of ions ejected from a Penning trap are described. This will allow for a precise monitoring of the state of ion motion in the trap.Comment: 20 pages, 13 figure

    Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides

    Get PDF
    The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-9} and 1.5x10^{-10}, respectively. With this stabilization the frequency determination with the Penning trap only shows a linear temporal drift over several hours on the 10 ppb level due to the finite resistance of the superconducting magnet coils.Comment: 23 pages, 13 figure

    Restoration of the N=82 Shell Gap from Direct Mass Measurements of 132,134^{132,134}Sn

    Get PDF
    A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of 134^{134}Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N=82, previously considered to be a case of “shell quenching.” In fact, the new shell gap value for the short-lived 132^{132}Sn is larger than that of the doubly-magic 48^{48}Ca which is stable. The N=82 shell gap has considerable impact on fission recycling during the rr process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nuclides
    • …
    corecore