307 research outputs found

    Non elliptic SPDEs and ambit fields: existence of densities

    Full text link
    Relying on the method developed in [debusscheromito2014], we prove the existence of a density for two different examples of random fields indexed by (t,x)\in(0,T]\times \Rd. The first example consists of SPDEs with Lipschitz continuous coefficients driven by a Gaussian noise white in time and with a stationary spatial covariance, in the setting of [dalang1999]. The density exists on the set where the nonlinearity σ\sigma of the noise does not vanish. This complements the results in [sanzsuess2015] where σ\sigma is assumed to be bounded away from zero. The second example is an ambit field with a stochastic integral term having as integrator a L\'evy basis of pure-jump, stable-like type.Comment: 23 page

    Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    Get PDF
    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation

    Photographie diachronique et changement des paysages : un siĂšcle de dynamique naturelle de la forĂȘt Ă  Saint Bauzille de Putois, vallĂ©e de l'HĂ©rault

    Get PDF
    La comparaison de photographies anciennes (prises au dĂ©but du siĂšcle) et de photographies actuelles des mĂȘmes paysages met en Ă©vidence de maniĂšre souvent spectaculaire les changements des paysages mĂ©diterranĂ©ens Ă  la suite de l'exode rural. Ceux-ci se transforment progressivement en une mosaĂŻque Ă  deux Ă©lĂ©ments, forĂȘts et culture, oĂč les formations vĂ©gĂ©tales intermĂ©diaires tendent Ă  disparaĂźtre. Ces changements mettent aussi en Ă©vidence la grande rĂ©silience des peuplements forestiers Ă©tudiĂ©e

    Dynamique des paysages mĂ©diterranĂ©ens : un siĂšcle de rĂ©installation naturelle de la forĂȘt dans le bassin versant de l'HĂ©rault.

    Get PDF
    Au milieu du 19Ăšme siĂšcle, la densitĂ© maximale de la population s'accompagne d'une utilisation intensive des boisements ; ensuite la phase de dĂ©prise aboutit Ă  une recolonisation par la forĂȘt

    Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term

    Get PDF
    The paper is devoted to a modification of the classical Cahn-Hilliard equation proposed by some physicists. This modification is obtained by adding the second time derivative of the order parameter multiplied by an inertial coefficient which is usually small in comparison to the other physical constants. The main feature of this equation is the fact that even a globally bounded nonlinearity is "supercritical" in the case of two and three space dimensions. Thus the standard methods used for studying semilinear hyperbolic equations are not very effective in the present case. Nevertheless, we have recently proven the global existence and dissipativity of strong solutions in the 2D case (with a cubic controlled growth nonlinearity) and for the 3D case with small inertial coefficient and arbitrary growth rate of the nonlinearity. The present contribution studies the long-time behavior of rather weak (energy) solutions of that equation and it is a natural complement of the results of our previous papers. Namely, we prove here that the attractors for energy and strong solutions coincide for both the cases mentioned above. Thus, the energy solutions are asymptotically smooth. In addition, we show that the non-smooth part of any energy solution decays exponentially in time and deduce that the (smooth) exponential attractor for the strong solutions constructed previously is simultaneously the exponential attractor for the energy solutions as well

    Stochastic attractors for shell phenomenological models of turbulence

    Full text link
    Recently, it has been proposed that the Navier-Stokes equations and a relevant linear advection model have the same long-time statistical properties, in particular, they have the same scaling exponents of their structure functions. This assertion has been investigate rigorously in the context of certain nonlinear deterministic phenomenological shell model, the Sabra shell model, of turbulence and its corresponding linear advection counterpart model. This relationship has been established through a "homotopy-like" coefficient λ\lambda which bridges continuously between the two systems. That is, for λ=1\lambda=1 one obtains the full nonlinear model, and the corresponding linear advection model is achieved for λ=0\lambda=0. In this paper, we investigate the validity of this assertion for certain stochastic phenomenological shell models of turbulence driven by an additive noise. We prove the continuous dependence of the solutions with respect to the parameter λ\lambda. Moreover, we show the existence of a finite-dimensional random attractor for each value of λ\lambda and establish the upper semicontinuity property of this random attractors, with respect to the parameter λ\lambda. This property is proved by a pathwise argument. Our study aims toward the development of basic results and techniques that may contribute to the understanding of the relation between the long-time statistical properties of the nonlinear and linear models

    Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise

    Full text link
    The Primitive Equations are a basic model in the study of large scale Oceanic and Atmospheric dynamics. These systems form the analytical core of the most advanced General Circulation Models. For this reason and due to their challenging nonlinear and anisotropic structure the Primitive Equations have recently received considerable attention from the mathematical community. In view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the Primitive Equations and more generally. In this work we study a stochastic version of the Primitive Equations. We establish the global existence of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, LtpLxqL^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.Comment: To appear in Nonlinearit

    FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    Get PDF
    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I)

    Longtime behavior of nonlocal Cahn-Hilliard equations

    Full text link
    Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is showing the eventual boundedness of the order parameter uniformly with respect to the initial datum. This is obtained through an Alikakos-Moser type argument. We establish a similar result for the viscous nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In this case the validity of the so-called separation property is crucial. We also discuss the convergence of a solution to a single stationary state. The separation property in the nonviscous case is known to hold when the mobility degenerates at the pure phases in a proper way and the potential is of logarithmic type. Thus, the existence of an exponential attractor can be proven in this case as well
    • 

    corecore