Here we consider the nonlocal Cahn-Hilliard equation with constant mobility
in a bounded domain. We prove that the associated dynamical system has an
exponential attractor, provided that the potential is regular. In order to do
that a crucial step is showing the eventual boundedness of the order parameter
uniformly with respect to the initial datum. This is obtained through an
Alikakos-Moser type argument. We establish a similar result for the viscous
nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In
this case the validity of the so-called separation property is crucial. We also
discuss the convergence of a solution to a single stationary state. The
separation property in the nonviscous case is known to hold when the mobility
degenerates at the pure phases in a proper way and the potential is of
logarithmic type. Thus, the existence of an exponential attractor can be proven
in this case as well