299 research outputs found

    Nuoriso suojeltava kapitalismin tuhoilta!: Eduskunnalle tehty alote siitä

    Get PDF

    Analytical expression of the magneto-optical Kerr effect and Brillouin light scattering intensity arising from dynamic magnetization

    Full text link
    Time-resolved magneto-optical Kerr effect (MOKE) and Brillouin light scattering (BLS) spectroscopy are important techniques for the investigation of magnetization dynamics. Within this article, we calculate analytically the MOKE and BLS signals from prototypical spin-wave modes in the ferromagnetic layer. The reliability of the analytical expressions is confirmed by optically exact numerical calculations. Finally, we discuss the dependence of the MOKE and BLS signals on the ferromagnetic layer thickness

    Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20

    Get PDF
    Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our analytical model is confirmed by the good agreement with literature DC values. For the samples considered here, we find indications that the interface plays a minor role for the spin-current transmission. Our findings establish terahertz emission spectroscopy as a reliable tool complementing the spintronics workbench

    Solution of the Nuclear Shell Model by Symmetry-Dictated Truncation

    Full text link
    The dynamical symmetries of the Fermion Dynamical Symmetry Model are used as a principle of truncation for the spherical shell model. Utilizing the usual principle of energy-dictated truncation to select a valence space, and symmetry-dictated truncation to select a collective subspace of that valence space, we are able to reduce the full shell model space to one of manageable dimensions with modern supercomputers, even for the heaviest nuclei. The resulting shell model then consists of diagonalizing an effective Hamiltonian within the restricted subspace. This theory is not confined to any symmetry limits, and represents a full solution of the original shell model if the appropriate effective interaction of the truncated space can be determined. As a first step in constructing that interaction, we present an empirical determination of its matrix elements for the collective subspace with no broken pairs in a representative set of nuclei with 130A250130\le A \le 250. We demonstrate that this effective interaction can be parameterized in terms of a few quantities varying slowly with particle number, and is capable of describing a broad range of low-energy observables for these nuclei. Finally we give a brief discussion of extending these methods to include a single broken collective pair.Comment: invited paper for J. Phys. G, 57 pages, Latex, 18 figures a macro are available under request at [email protected]

    Direct imaging of the structural change generated by dielectric breakdown in MgO based magnetic tunnel junctions

    Full text link
    MgO based magnetic tunnel junctions are prepared to investigate the dielectric breakdown of the tunnel barrier. The breakdown is directly visualized by transmission electron microscopy measurements. The broken tunnel junctions are prepared for the microscopy measurements by focussed ion beam out of the junctions characterized by transport investigations. Consequently, a direct comparison of transport behavior and structure of the intact and broken junctions is obtained. Compared to earlier findings in Alumina based junctions, the MgO barrier shows much more microscopic pinholes after breakdown. This can be explained within a simple model assuming a relationship between the current density at the breakdown and the rate of pinhole formation

    Interface-engineered templates for molecular spin memory devices

    Get PDF
    The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices(1, 2), opening avenues for developing multifunctional molecular spintronics(3). Such ideas have been researched extensively, using single-molecule magnets(4, 5) and molecules with a metal ion(6) or nitrogen vacancy(7) as localized spin-carrying centres for storage and for realizing logic operations(8). However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task(9). In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl(10), have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli(11, 12) (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet ; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets(13). Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development

    A proposed reaction channel for the synthesis of the superheavy nucleus Z = 109

    Full text link
    We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel 30^{30}Si + 243^{243}Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.Comment: 4 pages, 2 figures, 2 tables; two typos are corrected in Ref. [12] and [19

    Coulomb breakup of neutron-rich 29,30^{29,30}Na isotopes near the island of inversion

    Get PDF
    First results are reported on the ground state configurations of the neutron-rich 29,30^{29,30}Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a 208Pb^{208}Pb target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 (7)(7) mb and 167 (13)(13) mb up to excitation energy of 10 MeV for one neutron removal from 29^{29}Na and 30^{30}Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of 29^{29}Na(3/2+){(3/2^+)} and 30^{30}Na(2+){(2^+)} is the dd orbital with small contribution in the ss-orbital which are coupled with ground state of the core. The ground state configurations of these nuclei are as 28^{28}Na_{gs (1^+)\otimes\nu_{s,d} and 29^{29}Nags(3/2+)νs,d_{gs}(3/2^+)\otimes\nu_{ s,d}, respectively. The ground state spin and parity of these nuclei, obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the ss and dd orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with the shell model calculation using MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in 30^{30}Na.Comment: Modified version of the manuscript is accepted for publication in Journal of Physics G, Jan., 201

    Potential energy surfaces of superheavy nuclei

    Get PDF
    We investigate the structure of the potential energy surfaces of the superheavy nuclei 258Fm, 264Hs, (Z=112,N=166), (Z=114,N=184), and (Z=120,N=172) within the framework of self-consistent nuclear models, i.e. the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrisation of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers.Comment: 8 pages RevTeX, 6 figure
    corecore