97 research outputs found

    Combining 2D and 3D characterization techniques for determining effects of HIP-rejuvenation after fatigue testing of SX microstructures

    Get PDF
    A hot isostatic pressing rejuvenation heat treatment is applied to a CMSX-4 type SX superalloy after it has been subjected to a low cycle fatigue test to rupture. The evolution of microstructural defects, such as pores and cracks which are present after fatigue, has been tracked in 3D by X-ray tomography before and after rejuvenation. From the rejuvenated specimen series of metallographic cross sections were prepared and investigated by scanning electron microscopy for getting complementary 2D information at high resolution. The micrographs were stitched to a panorama which was then matched into the 3D representation of the specimen volume. By combining 3D and 2D data, statistical volume related quantities were achieved while detailed characteristics have been assigned to individual defects present in the 2D panorama micrograph. This technique is in general appropriate for length-scale bridging microstructural investigations. Results of the performed investigations concerning the rejuvenation effect on the microstructure are presented and discussed

    Selective production of Dihydroxyacetone and Glyceraldehyde by Photo-assisted Oxidation of Glycerol

    Get PDF
    Glycerol is a by-product during biodiesel production and represents a potential low-cost raw material for obtaining high-cost products like Dihydroxyacetone (DHA) and glyceraldehyde (GCD) amongst others. In this work, Fe-Pillared clay (Fe-PILC) was assessed as catalyst of the selective photo-oxidation of glycerol to obtain DHA and GCD at moderate conditions (298 K and atmospheric pressure). This was conducted in a 100 mL Pyrex glass batch reactor where a Pen-Ray lamp of mercury of 5.5 Watts UV light (UVP) was placed at the centre. The Fe-PILC was prepared by ion exchange. The pillaring was confirmed by XRD, and a 17% w/w of Fe was determined by Atomic Absorption Spectroscopy. The active phases were established by XPS and found to be FeO and Fe3O4. The specific surface area of the clay (bentonite), determined by N2 physisorption, increased from 34 m2/g to 227 m2/g and the pore volume increased from 0.058 cm3/g to 0.106 cm3/g. The studied variables were catalyst loading and glycerol initial concentration. An experiment with TiO2 Degussa P25 was also performed as reference. It was found that by adding Fe-PILC to the glycerol oxidation system, selectivity towards DHA or GCD can be tuned. A selectivity towards DHA was found to be 87% with 0.1 g/L of Fe-Pillared after 8 h reaction. The in situ production ofH2O2 was observed and therefore concluded that the glycerol oxidation occurs via a Fenton process, i.e. via free radicals.CONAYCT project 269093 UAEM project 437

    Application of multivariate analysis to investigate potential antioxidants in conventional and torrefacto roasted coffee

    Get PDF
    In the present work multivariate statistical techniques were applied to the coffee compounds and the overall antioxidant capacity of commercial conventional and torrefacto roasted coffees in order to investigate the main antioxidant compounds in coffee. Statistical analyses showed significant correlations between browned compounds, trigonelline, 5-caffeoylquinic acid and cafeic acid contents with the antioxidant activity measured by both DPPH- and redox potential methods. Trigonelline solutions showed an antioxidant capacity close to zero and should not be considered as a potential antioxidant compound. Principal Component Analysis (PCA) was applied to evidence the correlations between antioxidant capacity and coffee chemical compounds. Conventional and torrefacto roasted coffees were separated by PC1 (62.5% of the total variance) characterized by antioxidant capacity and chemical compounds highly correlated with antioxidant capacity. Furthermore, a descriptive chemical characterization of conventional and torrefacto ground roasted coffee has been carried out. Sixty-nine volatile compounds were identified and quantified. Their negative correlations with antioxidant capacity suggest a prooxidant capacity that should need further investigations

    Regulation of p27 and cdk2 expression in different adipose tissue depots in aging and obesity

    Get PDF
    Aging usually comes associated with increased visceral fat accumulation, reaching even an obesity state, and favoring its associated comorbidities. One of the processes involved in aging is cellular senescence, which is highly dependent on the activity of the regulators of the cell cycle. The aim of this study was to analyze the changes in the expression of p27 and cdk2 in different adipose tissue depots during aging, as well as their regulation by obesity in mice. Changes in the expression of p27 and CDK2 in visceral and subcutaneous white adipose tissue (WAT) biopsies were also analyzed in a human cohort of obesity and type 2 diabetes. p27, but not cdk2, exhibits a lower expression in subcutaneous than in visceral WAT in mice and humans. p27 is drastically downregulated by aging in subcutaneous WAT (scWAT), but not in gonadal WAT, of female mice. Obesity upregulates p27 and cdk2 expression in scWAT, but not in other fat depots of aged mice. In humans, a significant upregulation of p27 was observed in visceral WAT of subjects with obesity. Taken together, these results show a differential adipose depot-dependent regulation of p27 and cdk2 in aging and obesity, suggesting that p27 and cdk2 could contribute to the adipose-tissue depot’s metabolic differences. Further studies are necessary to fully corroborate this hypothesis

    Effect of ultra high temperature (UHT) treatment on coffee brew stability

    Get PDF
    In this work, the influence of an Ultra High Temperature (UHT) treatment on chemical and sensory composition of Arabica coffee brews for a longer shelf-life has been studied. A temperature of 120 degrees C for 2 s allows to obtain a microbiologically safe coffee brew, good valued from the sensory point of view. The behavior of the UHT vs non UHT treated coffee brew was followed throughout 120 days of storage at 4 degrees C. The UHT treatment keeps the typical acidity of the brews longer, delaying and softening the pH decrease and the development of sourness, which is one of the main causes for the rejection of stored coffee brews. The UHT treatment hardly affects the concentrations of caffeine and trigonelline, and of some phenolic compounds such as 5-caffeoylquinic (5-CQA), caffeic or ferulic acids. Sixteen key odorants and staling volatiles were analyzed by HS-GC-MS and lower changes were observed in the UHT treated coffee brew throughout storage. Higher DPPH center dot scavenging activity was observed in the UHT treated coffee brew from days 60 to 120. In conclusion, the application of an UHT treatment is proposed to extend the shelf-life (up to 60 days) of stored coffee brews
    • …
    corecore