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ABSTRACT 

In the present work multivariate statistical techniques were applied to the coffee 

compounds and the overall antioxidant capacity of commercial conventional and 

torrefacto roasted coffees in order to investigate the main antioxidant compounds in 

coffee. Statistical analyses showed significant correlations between browned 

compounds, trigonelline, 5- caffeoylquinic acid and cafeic acid contents with the 

antioxidant activity measured by both DPPH· and redox potential methods. Trigonelline 

solutions showed an antioxidant capacity close to zero and should not be considered as a 

potential antioxidant compound. Principal Component Analysis (PCA) was applied to 

evidence the correlations between antioxidant capacity and coffee chemical compounds. 

Conventional and torrefacto roasted coffees were separated by PC1 (62.5% of the total 

variance) characterized by antioxidant capacity and chemical compounds highly 

correlated with antioxidant capacity. Furthermore, a descriptive chemical 

characterization of conventional and torrefacto ground roasted coffee has been carried 

out. Sixty nine volatile compounds were identified and quantified. The correlations 

suggest a prooxidant capacity that should need further investigations. 

 

KEYWORDS: Coffee - Torrefacto roast – Antioxidant- Correlations- Principal 

Component Analysis (PCA) 
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INTRODUCTION 

During last decades, epidemiological studies on the relationships between coffee 

consumption and diseases risks have changed to be focused on the positive impact on 

health promotion or disease prevention [1, 2]. In fact, coffee has been proposed as one 

of the main contributors of dietary antioxidant intake in the diet in Norway [3] and in 

Spain [4]. Furthermore, there is strong evidence that moderate consumption of coffee 

induces an increase of the antioxidant capacity in the human plasma [5]. 

Coffee is a rich source of phenolics, mainly chlorogenic acids and their degradation 

products (quinic, caffeic, coumaric and ferulic acids). 5-Caffeoilquinic acid has been 

demonstrated to be a powerful antioxidant in vitro and ex vivo [6]. However, only a total 

of 10% of the overall antioxidant capacity of roasted coffee was found to be due to 

chlorogenic acids [7]. Hydroxycinnamic acids are in lower amounts and their standards 

showed moderate antioxidant capacity [8]. Caffeine has also been reported as 

antioxidant [9, 10]. But, although decaffeinated coffees exhibit lower antioxidant 

capacity than regular coffee, they continue being a high antioxidant beverage [11, 12]. 

Also, another nitrogen compound such as trigonelline has been reported as antioxidant 

included with other coffee compounds [13, 6]. 

However, due to the coffee roasting process, natural phenolic compounds can be lost 

while other antioxidant compounds, such as Maillard Reaction Products (MRPs), are 

developed enhancing overall antioxidant properties [14, 15]. Multiple studies suggest 

that melanoidins are responsible for the strong antioxidant properties exhibited by 

roasted coffee beverages [16-20]. In addition, some heterocyclic volatile compounds 

developed in roasting process have been suggested as antioxidants compounds [21-23]. 

Most of these studies about the antioxidant capacity of coffee compounds have been 

carried out using individual coffee compound standards or their combinations in model 

 3



systems, or by means of coffee extracts or coffee fractionation without taking into 

account the whole complex matrix. However, overall antioxidant capacity of coffee 

could be due to several coffee compounds and their synergic and antagonistic 

interactions. 

In previous works, increases of the antioxidant capacity of coffee by the application of 

torrefacto roasting process, with sugar addition, were observed [24, 25]. In the present 

study, multivariate statistical techniques were applied to the coffee compounds and the 

overall antioxidant capacity of commercial conventional and torrefacto roasted coffees 

in order to investigate the main antioxidant compounds in coffee avoiding possible 

artefacts produced by extractions, fractionations or individual compounds. Furthermore, 

a descriptive chemical characterization of conventional and torrefacto ground roasted 

coffee has been made. 
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MATERIALS AND METHODS 

Materials. Eleven commercial roasted coffee samples were purchased in a local market: 

two conventional roasted pure Coffea arabica from Colombia (namely as Colombian), 

three conventional roasted coffee blends arabica/robusta (0 T), two blends 

arabica/robusta with 30% Torrefacto roasted coffee (30 T), two blends arabica/robusta 

with 50% Torrefacto roasted coffee (50 T) and two 100% Torrefacto roasted coffees 

robusta variety (100 T).  

Pure reference standards were from the suppliers given in parentheses: pentoxifylline 

caffeine, trigonelline, 5-caffeoylquinic acid, caffeic acid, ferulic acid and 4-

vinylguaiacol, acetaldehyde, dimethylsulfide, propanal, furan, 2-methylpropanal, 

thiophene, hexanal, 3-penten-2-one, (Aldrich, Saint Quentin Fallavier, France), 2-

butanone, 3-methylbutanal, 2,3-butanedione, 2,3-pentanedione, 2-methyl-1-propanol, 

(Acros organic, Noisy le Grand, France). 

General parameters. Water activity (aw) was measured using a Novasina Model 503 

water activity-meter. Moisture was determined using the method of AOAC [26]. 

Soluble solids were determined according to official AOAC method [27]. Ash content 

was determined by incineration at 550 °C according to official AOAC method [28]. The 

nitrogen was analyzed using the Kjeldahl method [29]. Total fat was determined using 

the method of AOAC [30]. 

Caffeine and Trigonelline. Extract preparation, cleanup and HPLC analysis have 

already been described by Maeztu et al. [31]. The high-performance liquid 

chromatographic system consisted of a Hewlett-Packard HPLC (model 1100 series 

Madrid, Spain) equipped with a binary pump and an automated sample injector. A 

reversed phase Hypersil-ODS (5 μm particle size, 250 x 4.6 mm) column was used. The 

mobile phase was acetonitrile/water (15:85) in isocratic condition at a constant flow rate 
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of 2.0 mL min-1. The sample injection volume was 20μL and the column was 

maintained at 25ºC. Detection was accomplished with a diode-array detector (Hewlett-

Packard 1100 series) at wavelength of 280 nm. 

5-Caffeoylquinic acid (5-CQA). Extraction of 5-CQA, cleanup and HPLC analysis 

were carried out according to the method of Bicchi et al. [32]. The HPLC equipment 

has been described in caffeine and trigonelline method. The conditions of the gradient 

solvent system used were 100% citrate-acetic acid buffer solution (pH 3.0) for 2 min, 

85:15 buffer/methanol for 8 min, both at a flow rate of 0.8 mL min-1, and 85:15 

buffer/methanol for 5 min at a flow rate of 1.2 mL min-1. The wavelength of detection 

was at 325 nm. The sample injection volume was 100μL and the column was 

maintained at 25º C. 

Hydroxycinnamic acids (caffeic acid and ferulic acid) and 4-vinylguaiacol. The 

extraction, clean-up and HPLC analysis of these three compounds were performed 

simultaneously, according to the method developed by Alvarez-Vidaurre et al. [33]. The 

HPLC analysis was carried out with the same equipment described in caffeine and 

trigonelline method. The chromatographic separation was achieved at 25ºC by using a 

complex gradient solvent system with acetonitrile/ water adjusted to pH 2.5 with a 

phosphoric acid solution already described by Alvarez-Vidaurre et al. [33]. The 

wavelengths of detection were 314 nm for caffeic acid, 325 nm for ferulic acid and 

210 nm for 4-vinylguaiacol. The sample injection volume was 100μL. 

Browned Compounds (Abs 420nm). 50 μL coffee extract, obtained by solid-liquid 

extraction 10/100 (g/mL) using deionised water at 100 ºC for 10 min, were diluted up to 

2 mL with deionised water. Browned compounds were quantified by measuring the 

absorbance of sample at 420 nm after exactly 1 min, in a 3 mL capacity glass cuvette 

(1 cm length) with a spectrophotometer Lambda 25 UV-VIS (Perkin-Elmer Instruments, 
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Madrid, Spain) connected to a thermostatically controlled chamber (25ºC) and equipped 

with UV WinLab software (Perkin Elmer). This measurement is employed as 

convenient index of the development of caramelization and Maillard reactions [34]. 

Volatile Compounds. Volatile compounds extraction by Static Headspace (HS) and 

Chromatography Mass Spectrometry (GC-MS) analysis were carried out with the 

method described by Sanz et al. [35]. Volatiles were extracted using a static headspace 

sampler (Hewlett-Packard model 7694). GC analysis was achieved in a Hewlett Packard 

gas chromatograph (HP model 6890) equipped with a fused silica capillary column DB-

Wax (J&W Scientific, i. d. 0.25 mm, 60 m, film thickness = 0.5 μm). The oven 

temperature was programmed from 40º C for 6 min to 205º C at 3º C min-1. The injector 

temperature was 180º C. Helium was used as carrier gas in constant flow mode (1 mL 

min-1). The volume of the injected sample was 1 μL and the split ratio was 6:1. Mass 

spectrometry was performed with a Hewlett-Packard mass selective detector (model 

5973) coupled to the gas chromatograph. The mass spectrometer operated in the 

electron impact ionization mode (70 eV). The mass spectrometer scanned mass from 

m/z 29 to 350. Ion source temperature was set at 230 ºC. 

Identification of the Volatile Compounds. Identification of the volatile compounds was 

based on computer matching of unknown spectra with those of the authentic compounds 

available in the Wiley 275 K Mass Spectral Database (Palisade Corporation, Mass 

Spectrometry, Newfield, NY.) and with spectra of the pure reference compounds and, in 

addition, by comparing their retention indexes with those of standard compounds and 

data from the literature. Linear retention indexes (RI) of the compounds were calculated 

using a series of alkanes (C5-C30) injected in the same chromatographic conditions and 

compared with available literature data. 
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Quantitative measurements. Identified coffee aroma compounds were quantified by GC-

MS. Areas of peaks were measured by calculating of the total ionic current (TIC). 

Results from volatile analysis are provided in total area counts x10-6 . 

Antioxidant Activity by DPPH· assay. The antioxidant activity was measured by 

using the DPPH· (2,2-diphenyl-1-picrylhydrazyl) decolourization assay [36]. A 6.1x10-

5M DPPH· methanol solution was prepared immediately before use. The DPPH· 

solution was adjusted with methanol to an absorbance of 0.7 (± 0.02) at 515 nm in a 1 

cm cuvette at 25ºC (Lambda 25 UV, VIS spectrophotometer, Perkin Elmer Instruments, 

Madrid, Spain). Trigonelline water solutions at different concentrations (5, 15 and 

30g L-1) were diluted 1:50 in water prior to analysis. Samples (20 μL) were added to 

DPPH· solution (1.98 mL). After mixing, the absorbance was measured at 515 nm after 

exactly 1 min, and then every minute for 18 min, with incubation at 25ºC. Reaction 

rates were calculated using the equation proposed by Manzocco et al. [37]: 

1/Abs3-1/Abso
3=-3kt where k is the DPPH· bleaching rate, Abso

 is the initial absorbance 

value, and Abs is the absorbance at increasing time, t. The antioxidant activity was 

expressed as slope obtained from the equation (-Abs –3 min-1) per mL of sample. 

Statistical analysis. All of the analyses were performed in triplicate. Results are shown 

as mean ± standard deviation. One-way analysis of variance (ANOVA) was applied to 

the results. T Tukey was applied as the test a posteriori with a level of significance of 

95%. Correlations among variables were assessed by means of the Pearson’s correlation 

test. Principal Components Analysis (PCA), based on the Pearson correlation matrix, 

was applied to the obtained data and to the antioxidant capacity results measured by 

DPPH and redox potential methods [25]. All statistical analyses were performed using 

the SPSS v.11.0 software package for Windows. 
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RESULTS AND DISCUSSION 

Physicochemical Parameters. Data for the physicochemical parameters of the 

commercial coffee samples are given in Table 1. Obtained results were in the range 

legally established by the Spanish Food Legislation [38, 39] except for 100 T samples 

that showed higher soluble solids content than the range legally established for 

torrefacto roasted coffee (25-40 g/100 g). Actually, soluble solids concentration 

increased with the higher percentage of torrefacto roasted coffee. The levels of total fat 

are similar to those reported by scientific literature [40] being approximately 15 g/100 g 

dry matter (d.m.) for Colombian coffees and lower (≈10 g/100 g d.m.) for 

arabica/robusta blends or robusta samples. In relation to nitrogenous compounds, 

Torrefacto coffee (100 T) and torrefacto coffee blends (30 T, 50 T) showed in most 

cases amounts of caffeine and trigonelline higher than in conventional ones (0 T and 

Colombian). These results might point out to higher robusta coffee amount in 

Torrefacto blends [41]. Higher amounts of 5-CQA were observed in Colombian samples 

than in conventional roasted coffee blends (0 T). Hydroxycinnamic acids (caffeic and 

ferulic acids), partially originated by chlorogenic acids hydrolysis during roasting 

process, as well as 4-vinylguaiacol (degradation product of ferulic acid), did not show a 

constant behaviour in relation to torrefacto roast. 

Browned compounds include those originated from Maillard reactions, such as 

melanoidins, and sugar caramelization. Colombian coffees presented higher browned 

compounds content than conventional roasted coffee blends (0 T). This fact could be 

partly explained by the higher roasting degree usually applied by roasters to Colombian 

coffee in order to decrease their high acidity. In fact, Delgado-Andrade et al. [19] 

extracted higher melanoidins amount in instant coffee brews when roasting degree 

increased. On the other hand, as can be observed in Table 1, the greatest production of 
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browned compounds in coffee blends took place under Torrefacto conditions increasing 

with the percentage of torrefacto coffee in comparison to conventional roasted coffee 

blend (0 T). These results could be explained by a higher formation of MRPs, but also 

to caramelization enhanced by sugar addition in torrefacto roasting process. 

Volatile Compounds. Figure 1 shows the chromatographic profiles of the volatile 

compounds of Colombian (A) and 100% Torrefacto (100 T) (B) ground roasted coffees. 

At a glance, a clear difference in the gas chromatographic profile is shown. In fact, the 

total area of volatile compounds was 243x10-6 for Colombian coffees and 93x10-6 for 

100 T. Table 2 shows the chromatographic areas of the identified compounds in all 

samples. Sixty nine volatile compounds were identified and quantified including three 

sulphur compounds, eight aldehydes, six esters, sixteen furans, eight ketones, four 

alcohols, two thiophenes, six pyrroles, two pyridines, nine pyrazines, two thiazoles, one 

lactone and two other compounds (one alkene and one acid).  

Conventional roasted coffee samples (Colombian and 0 T) showed significantly higher 

total area of volatiles than torrefacto roasted coffee blends because the most abundant 

volatile chemical classes (aldehydes, furans, ketones and esters) were significantly 

higher in conventional roasted coffees. Similar results were observed by Sanz et al. [42] 

in ground roasted coffee when a blend of Arabica 80%-Robusta 20% (A80:R20) was 

compared with 50% Torrefacto. Nevertheless, only esters were higher in a blend of 

Arabica 20%-Robusta80% (A20:R80) than in 50% torrefacto coffee. These results let us 

suppose that our conventional roasted coffee blends (0 T) were more similar to 

A80:R20 than A20:R80, and consequently richer in Arabica coffee variety. The areas of 

pyrazines, pyridines and pyrroles were the highest in 0 T coffees and the lowest in 

100 T. These results seem in contradiction with their possible higher formation in 

Torrefacto roasting process because the addition of sugar might enhance Maillard 
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reactions [43]. However, the higher total area of the volatiles in conventional ground 

roasted coffees should be also taken into account. Moreover, the contribution of a 

particular volatile compound to aroma is related to the balance among different aroma 

compounds. Thus, comparing the relative percentages of the chemical classes, it can be 

observed that pyrazines were in significantly higher proportion in torrefacto coffees 

than in conventional ones (11.1% in 100 T vs. 6.6 % in 0 T). Consequently, pyrazines 

could contribute more to aroma in torrefacto coffees than pyrroles and pyridines which 

had very low relative percentages (1.9% in both coffees for pyrroles, and 1.6% in 100 T 

vs. 3.3% in 0 T for pyridines). 

Statistical Approach to Potential Antioxidants. Correlations were calculated between 

both antioxidant capacity parameters (DPPH· method and redox potential) and chemical 

content of ground roasted coffee samples (Table 3). Highly significant (p<0.01) and 

excellent (r>0.75) correlations between both antioxidant capacity parameters (DPPH· 

and redox potential) and browned compounds content (0.814 and -0.796, respectively) 

were found. Several studies suggest that brown polymeric melanoidins produced by 

roasting process are responsible for the strong antioxidant capacity of coffee brews [16, 

19, 20]. There were significant (p<0.01) and very good correlations between 

trigonelline content and the antioxidant capacity measured by DPPH· method (0.809) 

and redox potential (-0.581) suggesting that trigonelline is likely significant contributor 

to antioxidant capacity in ground roasted coffee. Other authors include trigonelline as 

antioxidant, but its efficiency is still unclear [6, 13]. Taking into account the obtained 

high correlations with antioxidant capacity and the unclear results of other works, the 

DPPH activity of trigonelline water solutions at concentration similar to those obtained 

in coffee (5g L-1) and higher (15 and 30g L-1) was measured. Figure 2 shows these 

results. Trigonelline solutions exhibited a dose-dependent antioxidant capacity close to 
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zero in all concentrations. Consequently, in spite of the highly significant correlation 

coefficients, trigonelline should not be considered as a potential antioxidant compound. 

These correlations could be related with a higher amount of robusta coffee in Torrefacto 

blends previously discussed. 

Significant (p<0.05) but moderate correlations between both antioxidant capacity 

parameters and 5-CQA (0.381 and -0.460 respectively) and caffeic acid (0.485 and -

0.430 respectively) were also found. The first agrees with the estimation of only a 10% 

of the overall antioxidant capacity of coffee is due to chlorogenic acids [7] and with the 

antioxidant and pro-oxidant activity of 5-CQA observed by Fujioka et al. [8]. The 

observed correlations for caffeic acid agree with the moderate antioxidant activity of 

this compound reported in model systems [8]. Even though ferulic acid has been 

described as a natural antioxidant [44], in the current work it was not significantly 

correlated with antioxidant capacity. As regard to 4-vinylguaiacol and contrarily with 

Fujioka et al. [8], the obtained results suggest a prooxidant activity of this compound. 

This opposite effect could be explained by both the higher concentration assayed in the 

first work [8] (3 times higher than in actual brewed coffee), and by the different matrix 

used (model system vs. whole complex matrix). 

Although the antioxidant capacity of caffeine has been assessed in a previous work [9], 

the chemopreventive activity of coffee seems to be not related to caffeine because 

regular and decaffeinated coffee brews induced the glutathione-S-transferasa (GST) in 

mice [6, 11]. The latter agrees with the not significant correlation coefficients found 

between coffee caffeine and the antioxidant parameters (DPPH· and redox potential) 

(0.228 and 0.059 respectively). In addition Parras et al. [45] did not observe caffeine as 

a contributor to antioxidant capacity in coffee brews. 
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The most abundant volatiles (aldehydes, furans, ketones and esters) were significantly 

but negatively correlated with DPPH·, but not significantly correlated with redox 

potential. The other volatile chemical classes (alcohols, thiophenes, pyrroles, pyridines, 

thiazoles and lactones) were significantly correlated with both DPPH· (-0.423 for 

alcohols to -0.742 for pyrroles) and redox potential (0.587 for alcohols to 0.856 for 

pyridines). These correlations suggest a prooxidant capacity in contradiction with the 

antioxidant capacity reported by Fuster et al. [21] and Yanagimoto et al. [22, 23]. On 

one hand, the levels of chemicals tested in those studies are considerably higher than 

levels in coffee. On the other hand, these correlations found could be arbitrary 

correlation due to the fact that those coffees that present higher antioxidant capacity 

were the less aromatic imputable to botanical variety and roasting process. Furthermore, 

it is very difficult to deduce the antioxidant or prooxidant capacity of coffee volatile 

compounds because although they are also in coffee, they are mainly in the headspace 

of the coffee and, consequently their real contribution to the protective activity in 

humans should need further investigations. 

Principal components analysis (PCA) was applied to evidence graphically the 

correlations between antioxidant capacity and coffee chemical compounds previously 

discussed and the characterization of conventional and torrefacto ground roasted 

coffees. Four principal components (PC) with eigenvalue greater than 1 were obtained. 

PC1 and PC2 explained 82.8% of the total variance. Figure 3 shows the bidimensional 

representation for all the variables and coffee samples defined by the two first principal 

components. PC1, which explained 62.5% of the total variance, is mainly characterized 

by antioxidant activity (DPPH· and redox potential), browned compounds, trigonelline 

and volatile compounds, except sulphur ones. Conventional coffee samples are found on 

the positive values of PC1 (right half graphic), whereas torrefacto coffee samples are 
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placed on the negative half graphic, being 100 T in the left extreme. In fact, as 

previously discussed, torrefacto roasted coffees were more antioxidant but less 

aromatic, and conventional roasted coffees were higher aromatic but less antioxidant. 

PC2, which explained 20.3% of the total variance, is characterized by 5-CQA, caffeine, 

ferulic acid and its degradation product 4-vinylguaiacol. However, this PC is less 

important in order to differentiate coffee samples, only Colombian is placed in the down 

extreme because of its lower caffeine, 4-vinylguaiacol and ferulic acid level. 

To sum up, statistical analyses showed significant correlations between browned 

compounds, trigonelline, 5-CQA and cafeic acid content with the antioxidant capacity 

measured by both DPPH· and redox potential methods. However, trigonelline solutions 

showed an antioxidant capacity close to zero and should not be considered as a potential 

antioxidant compound. This positive correlation could be related with a higher amount 

of robusta coffee in Torrefacto blends. More investigations must be performed to 

elucidate the role of volatile compounds in antioxidant capacity of coffee. 
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Figure captions 

Figure 1. HS-GC-MS chromatograms of Colombian (A) and 100% Torrefacto (100 T) 

(B) ground roasted coffee. For peaks identification see Table 2. 

Figure 2. DPPH· antioxidant activity of trigonelline water solutions. 

Figure 3. Principal Component Analysis (PCA) of the ground roasted coffees. 
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Table captions 

Table 1. Physicochemical parameters of ground roasted coffees. 

Table 2. Chromatographic areas (x10-6) of identified volatile compounds in ground 

roasted coffees 1. 

Table 3. Pearson correlation coefficients between coffee compounds and antioxidant 

capacity (measured by DPPH· and redox potential methods) in ground roasted coffees. 
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Figure 1. HS-GC-MS chromatograms of Colombian (A) and 100% Torrefacto (100 T) 

(B) ground roasted coffee. For peaks identification see Table 2. 
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Figure 2. DPPH· antioxidant activity of trigonelline water solutions. 
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Figure 3. Principal Component Analysis (PCA) of the ground roasted coffees. 
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Table 1. Physicochemical parameters of ground roasted coffees. 
 

 Colombian 
(n=6) 

0 T 
(n=9) 

30 T 
(n=6) 

50 T 
(n=6) 

100 T 
(n=6) 

Aw 0.07 ± 0.01 a 0.07 ± 0.01 a 0.06 ± 0.00 a 0.07 ± 0.01 a 0.06 ± 0.00 a
Moisture (g/100g) 3.23 ± 1.30 bc 3.88 ± 0.92 bc 3.06 ± 0.04 b 4.07 ± 0.16 c 1.32 ± 0.04 a

Ash (g/100g) 4.08 ± 0.07 cd 3.93 ± 0.21 bc 4.15 ± 0.06 d 3.88 ± 0.07 b 3.70 ± 0.01 a

Soluble Solids (g/100g) 31.33 ± 0.84 a 32.05 ± 1.78 a 32.76 ± 0.75 ab 35.04 ± 1.77 b 41.95 ± 2.74 c

Total Fat (g/100g d.m.) 14.56 ± 0.15 c 10.53 ± 0.60 b 10.62 ± 0.12 b 9.12 ± 0.68 a 9.16 ± 0.23 a

Nitrogen (g/100g d.m.) 2.44 ± 0.21 a 2.72 ± 0.14 b 2.66 ± 0.18 ab 2.79 ± 0.08 b 2.64 ± 0.11 ab

Caffeine (g/100g d.m.) 1.13 ± 0.02 a 1.64 ± 0.16 b 1.58 ± 0.16 b 1.82 ± 0.05 c 1.95 ± 0.01 d

Trigonelline (g/100g d.m.) 0.43 ± 0.01 b 0.38 ± 0.02 a 0.57 ± 0.08 c 0.61 ± 0.05 d 0.68 ± 0.02 e

5-CQA (g/100g d.m.) 0.43 ± 0.02 c 0.31 ± 0.02 a 0.38 ± 0.03 b 0.29 ± 0.01 a 0.43 ± 0.01 c

Caffeic Acid (mg/100g d.m.) 0.55 ± 0.02 ab 0.39 ± 0.05 a 0.63 ± 0.06 b 1.12 ± 0.41 c 0.58 ± 0.04 b

Ferulic Acid (mg/100g d.m.) 1.08 ± 0.37 a 1.60 ± 0.14 bc 1.93 ± 0.58 c 1.28 ± 0.12 ab 1.88 ± 0.37 c

4-Vinylguaiacol (mg/100g d.m.) 2.82 ± 0.35 a 6.61 ± 1.74 c 4.86 ± 0.89 b 5.76 ± 0.19 bc 3.06 ± 0.47 a

Browned Compounds (Abs 420nm) 0.44 ± 0.02 b 0.32 ± 0.04 a 0.48 ± 0.03 c 0.54 ± 0.02 d 0.62 ± 0.02 e

      
Antioxidant capacity †      

DPPH method (-Abs^-3/min)/g 439.45 ± 44.77 b 344.83 ± 51.30 a 477.12 ± 28.84 bc 518.95 ± 31.54 c 584.86 ± 26.91 d

Redox potential (mV) 10.75 ± 2.04 b 28.08 ± 3.37 d 20.17 ± 5.01 c 13.93 ± 0.83 bc -1.71 ± 11.40 a
 

 
All values are shown as means ± standard deviations. In each row, different letters indicate significant 
difference (p < 0.05) among coffee samples. 
d.m.: dry matter. † These results were published in reference 25.
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Table 2. Chromatographic areas (x10-6) of identified volatile compounds in ground 

roasted coffees 1. 

Peak 2 KI 3 Id 4 Compound Colombian 
(n=6) 

0 T 
(n=9) 

30 T 
(n=6) 

50 T 
(n=6) 

100 T 
(n=6) 

1 624 B 1,3-Pentadiene 3.10 ± 0.41 c 1.88 ± 0.74 b 1.65 ± 1.03 ab 0.80 ± 0.14 ab 0.46 ± 0.04 a

2 635 B Methanethiol 0.14 ± 0.03 b 0.02 ± 0.03 a n.d.  n.d.  0.16 ± 0.01 b

3 645 A Acetaldehyde 8.29 ± 0.21 d 4.39 ± 0.48 c 2.73 ± 0.95 b 2.17 ± 0.37 b 0.39 ± 0.00 a

4 671 A Dimethylsulphide 0.98 ± 0.39 b 0.37 ± 0.29 a n.d. n.d. 1.59 ± 0.11 c

5 682 B Formic acid. methyl ester 21.47 ± 0.77 c 12.97 ± 2.68 b 6.09 ± 2.12 a 5.48 ± 1.11 a 2.98 ± 0.10 a

6 712 A Propanal 7.11 ± 0.39 d 5.17 ± 0.80 c 2.43 ± 0.43 b 2.36 ± 0.30 b 0.72 ± 0.04 a

7 716 A Furan 3.94 ± 0.49 c 4.13 ± 0.70 c 2.39 ± 0.78 b 2.63 ± 0.62 b 1.14 ± 0.06 a

8 747 A 2-Methylpropanal 17.39 ± 1.37 c 16.03 ± 2.40 c 7.15 ± 1.09 ab 7.62 ± 1.48 b 4.34 ± 0.42 a

9 753 B 2-Propanone 22.83 ± 1.45 c 24.34 ± 2.38 c 13.69 ± 1.79 b 17.13 ± 3.35 b 4.06 ± 0.08 a

10 782 B Acetic acid methyl ester 6.69 ± 0.80 b 9.35 ± 1.99 c 4.50 ± 0.44 b 5.44 ± 0.89 b 2.12 ± 0.13 a

11 832 B 2-Methylfuran 28.05 ± 1.21 c 29.86 ± 4.73 c 15.00 ± 0.65 b 18.64 ± 4.94 b 5.84 ± 0.68 a

12 839 B Butanal 0.38 ± 0.04 ab 0.45 ± 0.13 ab 0.19 ± 0.12 a 0.18 ± 0.04 a 0.69 ± 0.81 b

13 850 B Acetic acid ethyl ester 0.63 ± 0.55 a n.d.  0.33 ± 0.36 a 0.34 ± 0.37 a n.d.  
14 858 B 3-Methylfuran 1.49 ± 0.06 c 1.52 ± 0.34 c 1.03 ± 0.39 bc 0.94 ± 0.18 b 0.26 ± 0.04 a

15 866 A 2-Butanone 4.64 ± 0.15 c 5.11 ± 0.84 c 3.21 ± 0.75 b 3.46 ± 0.55 b 0.95 ± 0.06 a

16 872 B Propanoic acid. methyl ester 0.11 ± 0.01 a 0.14 ± 0.04 a 0.09 ± 0.04 a 0.55 ± 0.55 a 0.25 ± 0.03 a

17 880 B 2-Methylbutanal 15.54 ± 1.42 c 15.59 ± 2.48 c 8.34 ± 1.21 b 9.85 ± 0.35 b 4.16 ± 0.43 a

18 884 A 3-Methylbutanal 21.10 ± 1.25 c 20.47 ± 3.22 c 10.72 ± 1.09 b 10.82 ± 2.54 b 3.43 ± 0.40 a

19 913 B Ethanol 2.13 ± 0.55 ab 3.32 ± 1.34 b 0.89 ± 0.05 a 1.17 ± 0.29 a 1.07 ± 0.06 a

20 930 B 2,5-Dimethylfuran 2.12 ± 0.20 bc 2.32 ± 0.37 c 1.97 ± 0.37 bc 1.64 ± 0.24 b 0.53 ± 0.05 a 

21 962 A 2,3-Butanedione 8.84 ± 1.85 d 6.44 ± 1.09 c 3.39 ± 0.51 b 2.83 ± 0.51 b 0.68 ± 0.06 a

22 1021 A Thiophene 0.38 ± 0.01 b 0.63 ± 0.12 c 0.42 ± 0.02 b 0.45 ± 0.02 b 0.19 ± 0.02 a

23 1053 B 3-Hexanone 0.18 ± 0.00 a 0.25 ± 0.04 b 0.19 ± 0.01 a 0.21 ± 0.02 ab 1.08 ± 0.09 c

24 1058 A 2,3-Pentanedione 11.68 ± 1.46 d 7.37 ± 1.03 c 4.12 ± 0.66 b 3.10 ± 0.38 b 1.39 ± 0.13 a

25 1075 B 2-Vinylfuran 0.47 ± 0.04 d 0.41 ± 0.05 cd 0.32 ± 0.08 bc 0.26 ± 0.03 b 0.09 ± 0.01 a

26 1077 B Dimethyldisulphide 0.29 ± 0.07 ab 0.74 ± 0.34 c 0.31 ± 0.10 ab 0.55 ± 0.08 bc 0.08 ± 0.01 a

27 1084 A Hexanal n.d.  0.10 ± 0.02 a 0.11 ± 0.02 a 0.13 ± 0.02 b 0.15 ± 0.00 b

28 1097 B 2-Methylthiophene 0.18 ± 0.01 b 0.29 ± 0.05 d 0.22 ± 0.01 bc 0.24 ± 0.02 c 0.10 ± 0.01 a

29 1102 B 2-Methyl-2-butenal 0.20 ± 0.01 b 0.26 ± 0.03 c 0.19 ± 0.03 b 0.18 ± 0.01 b 0.05 ± 0.01 a

30 1103 A 2-Methyl-1-propanol n.d.  0.11 ± 0.17 a n.d.  n.d.  n.d.  
31 1138 A 3-Penten-2-one 0.18 ± 0.04 c 0.16 ± 0.03 bc 0.11 ± 0.04 ab 0.10 ± 0.02 a n.d.  
32 1143 B 3,4-Hexanedione 0.31 ± 0.05 c 0.16 ± 0.05 b 0.17 ± 0.05 b 0.13 ± 0.04 b 0.05 ± 0.01 a

33 1149 B 1-Methyl-1H-pyrrole 1.64 ± 0.06 b 2.98 ± 0.77 c 1.96 ± 0.16 b 1.96 ± 0.16 b 0.64 ± 0.06 a

34 1160 B 2-Vinyl-5-methylfuran 0.68 ± 0.05 c 0.59 ± 0.08 c 0.46 ± 0.12 b 0.41 ± 0.03 b 0.13 ± 0.01 a

35 1194 B 1-Ethyl-1H-pyrrole 0.09 ± 0.02 ab 0.26 ± 0.08 d 0.16 ± 0.01 bc 0.19 ± 0.02 cd 0.05 ± 0.00 a

36 1203 B Pyridine 4.00 ± 0.82 b 7.30 ± 1.56 c 4.78 ± 0.51 b 4.01 ± 0.73 b 0.80 ± 0.08 a

37 1225 B 2,5-Dimethylpyrrole 0.06 ± 0.01 ab 0.15 ± 0.04 c 0.09 ± 0.01 b 0.08 ± 0.01 b 0.02 ± 0.00 a

38 1231 B Pyrazine 0.96 ± 0.18 b 1.62 ± 0.42 c 0.82 ± 0.11 b 1.02 ± 0.24 b 0.22 ± 0.01 a

39 1239 B 2-Methylpyridine n.d.  0.06 ± 0.04 a 0.03 ± 0.03 a 0.05 ± 0.01 a n.d.  
40 1252 B Furfurylmethylether 0.25 ± 0.04 b 0.25 ± 0.03 b 0.21 ± 0.04 b 0.19 ± 0.03 b 0.06 ± 0.01 a

41 1264 B 3-Methyl-3-buten-1-ol n.d.  0.02 ± 0.03 a 0.06 ± 0.06 a 0.03 ± 0.03 a 0.60 ± 0.00 b

42 1270 B 1,3-Thiazole 0.02 ± 0.00 a 0.04 ± 0.01 b 0.01 ± 0.01 a 0.01 ± 0.01 a n.d.  
43 1283 B 3(2H)-Furanone, dihydro-2-methyl 3.12 ± 0.49 c 1.60 ± 0.53 ab 1.85 ± 0.61 b 1.09 ± 0.12 ab 0.89 ± 0.04 a

44 1288 B 2-Methylpyrazine 5.63 ± 0.55 b 8.60 ± 1.95 c 5.89 ± 1.04 b 5.74 ± 1.09 b 2.99 ± 0.17 a

45 1304 B 4-Methylthiazole 0.05 ± 0.01 ab 0.09 ± 0.03 c 0.05 ± 0.00 ab 0.06 ± 0.02 bc 0.03 ± 0.01 a

46 1323 B 1-Hydroxy-2-propanone 2.45 ± 0.29 b 1.28 ± 1.01 a n.d.  n.d.  n.d.  
47 1347 B 2,5-Dimethylpyrazine 0.93 ± 0.24 a 1.00 ± 0.22 a 0.88 ± 0.12 a 0.75 ± 0.10 a 0.88 ± 0.02 a

48 1353 B 2,6-Dimethylpyrazine 1.05 ± 0.31 b 1.28 ± 0.29 b 0.99 ± 0.14 ab 0.93 ± 0.15 ab 0.56 ± 0.05 a

49 1359 B 2-Ethylpyrazine 0.66 ± 0.16 b 1.00 ± 0.22 c 0.69 ± 0.06 b 0.74 ± 0.12 bc 0.06 ± 0.01 a

50 1372 B 2,3-Dimethylpyrazine 0.27 ± 0.07 a 0.39 ± 0.05 b 0.36± 0.01 ab 0.31 ± 0.03 ab 0.34 ± 0.01 ab

51 1411 B 2-Ethyl-6-methylpyrazine 0.10 ± 0.02 a 0.18 ± 0.05 b 0.11 ± 0.01 a 0.13 ± 0.03 ab 0.40 ± 0.01 c

52 1419 B 2-Ethyl-5-methylpyrazine 0.29 ± 0.05 b 0.36 ± 0.05 b
b

0.34 ± 0.01 b 0.32 ± 0.02 b 0.19 ± 0.00 a

53 1432 B 2-Ethyl-3-methylpyrazine 0.15 ± 0.02 a 0.21 ± 0.03 b 0.20 ± 0.01 b 0.19 ± 0.02 b n.d.  
54 1480 B Acetic acid 2.94 ± 0.02 c 1.70 ± 0.77 b 0.75 ± 0.05 a 3.01 ± 0.45 c n.d.  
55 1484 B 1-Hydroxy-2-propanone acetate 1.91 ± 0.48 c 1.59 ± 0.35 bc 1.18 ± 0.41 b 1.10 ± 0.15 b 0.24 ± 0.01 a

56 1490 B Furfural 6.01 ± 0.18 c 2.35 ± 0.62 b 1.65 ± 0.71 ab 1.99 ± 0.18 b 1.03 ± 0.01 a

57 1509 B 2-Ethyl-1-hexanol n.d.  n.d.  0.03 ± 0.03 a n.d.  n.d.  
58 1516 B 2-Furfurylmethylsulphide 0.09 ± 0.01 a 0.16 ± 0.09 a 0.09 ± 0.01 a 0.11 ± 0.02 a n.d.  
59 1519 B 2-Furfurylformate 0.26 ± 0.13 a 0.20 ± 0.08 a 0.11 ± 0.12 a 0.17 ± 0.06 a n.d.  
60 1536 B 2-Acetylfuran 0.77 ± 0.12 c 0.47 ± 0.10 b 0.42 ± 0.13 b 0.38 ± 0.05 b 0.15 ± 0.00 a

61 1542 B 1H-Pyrrole 0.43 ± 0.06 b 0.62 ± 0.19 b 0.49 ± 0.07 b 0.51 ± 0.09 b 0.15 ± 0.01 a

62 1556 B 1-Hydroxy-2-butanone acetate 0.39 ± 0.10 a n.d.  n.d.  n.d.  n.d.  
63 1559 B Furfuryl acetate 0.98 ± 0.20 b 0.70 ± 0.33 b 0.91 ± 0.20 b 0.76 ± 0.25 b 0.09 ± 0.00 a
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64 1605 B 5-Methylfurfural 2.61 ± 0.29 c 1.29 ± 0.33 b 1.02 ± 0.45 b 0.97 ± 0.03 b 0.45 ± 0.01 a

65 1615 B 2-Furfurylfuran 0.07 ± 0.01 a 0.10 ± 0.03 a 0.05 ± 0.05 a 0.10 ± 0.03 a n.d.  
66 1661 B 2-Formyl-1-methylpyrrole 0.17 ± 0.01 c 0.15 ± 0.01 bc 0.15 ± 0.01 bc 0.13 ± 0.01 b 0.08 ± 0.00 a

67 1673 B γ-Butyrolactone 0.51 ± 0.05 b 0.72 ± 0.17 c 0.42 ± 0.06 b 0.54 ± 0.11 bc 0.06 ± 0.00 a

68 1686 B Furanmethanol 5.16 ± 0.41 c 5.22 ± 1.66 c 2.58 ± 0.46 b 3.51 ± 0.75 bc 0.10 ± 0.01 a

69 1833 B N-Furfurylpyrrole 0.04 ± 0.01 a 0.05 ± 0.01 a 0.04 ± 0.00 a 0.05 ± 0.00 a n.d.  
   Total  235.55 ± 8.98 c 218.94 ± 33.71 c 121.74 ± 19.39 b 130.92 ± 23.06 b 50.07 ± 4.27 a

   Total Sulphur Compounds 1.41 ± 0.42 cd 1.13 ± 0.56 bc 0.31 ± 0.31 a 0.55 ± 0.55 ab 1.82 ± 0.13 d

   Total Aldehydes 70.02 ± 3.80 c 62.46 ± 9.20 c 31.87 ± 4.74 b 33.32 ± 4.69 b 13.91 ± 2.12 a

   Total Esters 31.12 ± 1.12 d 24.05 ± 4.21 c 12.19 ± 3.34 b 12.90 ± 3.02 b 5.59 ± 0.26 a

   Total Furans 56.05 ± 1.66 c 51.16 ± 8.19 c 30.06 ± 4.55 b 33.78 ± 7.14 b 10.74 ± 0.91 a

   Total Ketones 51.17 ± 2.06 c 45.11 ± 5.79 c 24.87 ± 3.75 b 26.93 ± 4.72 b 8.19 ± 0.42 a

   Total Alcohols 2.13 ± 0.55 ab 3.46 ± 1.44 b 0.98 ± 0.14 a 1.21 ± 0.32 a 1.67 ± 0.06 a

   Total Thiophenes 0.56 ± 0.02 b 0.92 ± 0.17 c 0.65 ± 0.02 b 0.69 ± 0.04 b 0.28 ± 0.03 a

   Total Pyrroles 2.43 ± 0.07 b 4.21 ± 0.73 c 2.89 ± 0.10 b 2.93 ± 0.28 b 0.94 ± 0.06 a

   Total Pyridines 4.00 ± 0.82 b 7.36 ± 1.59 c 4.81 ± 0.47 b 4.06 ± 0.74 b 0.80 ± 0.08 a

   Total Pyrazines 10.04 ± 1.58 b 14.65 ± 3.19 c 10.25 ± 1.47 b 10.12 ± 1.77 b 5.62 ± 0.28 a

   Total Thiazoles 0.06 ± 0.01 ab 0.13 ± 0.04 c 0.05 ± 0.01 ab 0.07 ± 0.01 b 0.03 ± 0.01 a

   Total Lactones 0.51 ± 0.05 b 0.73 ± 0.17 c 0.42 ± 0.06 b 0.54 ± 0.11 bc 0.06 ± 0.00 a

   Total Others  6.05 ± 0.87 d 3.58 ± 0.58 bc 2.39 ± 1.03 b 3.81 ± 0.53 c 0.46 ± 0.04 a
 

1 All values are shown as means ± standard deviations. In each row different letters indicate significant 
difference (p < 0.05) among coffee samples. 
2 Compounds corresponding to chromatographic peaks in Fig. 2 
3 Retention Index determined on HP-Wax capillary column. 
4 Identification proposal is indicated by the following: A, mass spectrum agreed with standards injected in 
the same conditions; B, tentative identification by comparing mass spectrum with Wiley mass spectral 
database and retention indexes with literature data. 
n.d. not detected 
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Table 3. Pearson correlation coefficients between coffee compounds and antioxidant 

capacity (measured by DPPH· and redox potential methods) in ground roasted coffees. 

Coffee brew compound DPPH· Redox potential 

Caffeine 0.228 ns 0.059 ns

Trigonelline 0.809 ** -0.581 ** 
5-CQA 0.381 * -0.460 * 

Caffeic Acid 0.485 ** -0.430 * 
Ferulic Acid -0.131 ns 0.198 ns

4-Vinylguaiacol -0.591 ** 0.562 ** 
Browned Compounds 0.814 ** -0.796 ** 

Total Sulphur Compounds -0.238 ns -0.148 ns

Total Aldehydes -0.641 ** 0.338 ns

Total Esters -0.529 ** 0.217 ns

Total Furans -0.637 ** 0.355 ns

Total Ketones -0.658 ** 0.322 ns

Total Alcohols -0.423 * 0.587 ** 
Total Thiophenes -0.726 ** 0.779 ** 

Total Pyrroles -0.742 ** 0.822 ** 
Total Pyridines -0.708 ** 0.856 ** 
Total Pyrazines -0.566 ** 0.808 ** 
Total Thiazoles -0.700 ** 0.708 ** 
Total Lactones -0.684 ** 0.648 ** 
Total Others -0.250 ns -0.092 ns

 
The symbols * and ** indicate significance at the 0.05 and 0.01 probability levels, respectively.  
ns means not significant. 
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